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Chapter 1
Games: The normal and potential forms

Chapter summary

h Definition of non-cooperative games
h Normal form games
h Nash equilibrium
h Existence of Nash equilibrium
h Potential functions

h Potential form games
h Equilibrium in potential form games
h Characterisation of equilibria
h Definition of Nash potential games
h Equivalence theorem for Nash potentials

1.1 What is game theory?

Game theory can be understood as a set of tools that enables the description and analysis of social interactive
decision situations. This perspective has several important implications. Firstly, game theory is not a single
unified theory or research programme in the sense of Lakatos (1978), but rather a collection of various subfields
and approaches. Each subfield represents a distinct approach to describing specific social interactive decision
situations.

The subject matter of game theory is social interactive decision making, which forms the foundation for
each subfield within the discipline. It serves as a unifying factor, bringing together the diverse tools and theories
that constitute game theory. Consequently, a common understanding emerges regarding what constitutes an
interactive decision situation. The following common features characterise such situations:

(i) Multiple decision makers are involved within a social decision situation. Each decision maker has the
potential to control specific decisions within that situation.1

(ii) Each decision maker possesses a set of actions from which they can choose when making a decision.
These potential choices are commonly referred to as actions. Thus, at each decision moment, a decision
maker has control over a range of multiple actions to select from.2

(iii) The decisions made by different decision makers interact with one another, influencing the resulting
outcome of the social decision situation. If any decision maker alters their selected action, it potentially
affects the outcome.

Based on these shared features, we can introduce established game-theoretic terminology. A social inter-
active decision situation is known as a game, with the decision makers referred to as players. Each player is
assumed to have control over at least one decision moment within the course of the game. At these decision
moments, players select actions from a well-defined set of multiple options.

1It is clear that if we have only one decision maker (player), then there is simply no interaction possible. Instead one then arrives at a
standard decision problem, which the subject of study in mathematical decision theory.

2If a decision maker would only control a set consisting of a single action for a certain decision moment, she would actually not make
any decision. She could therefore be omitted as a relevant decision maker at that moment in the decision situation.



1.1 What is game theory?

By recognising and studying these common features, we can effectively analyse and understand a wide
range of social interactive decision situations using game theory. I explore next some well-established mathe-
matical game-theoretic frameworks in which these interactive decision situations are represented.

The fundamental approaches in game theory There are two fundamentally different approaches to the de-
scription of an interactive decision situation. The first approach is based on the absolute absence of any binding
agreements between the decision makers in these interactive decision situations. This is also known as non-
cooperative game theory.

The non-cooperative approach fits very well withmany applications of a social interactive decision situation
as described by a game. Indeed, it assumes that each player in a game is driven by a well-formulated goal.
This goal is formalised as the player’s payoff function. This function assigns to each outcome resulting from a
selection of individual actions a payoff. Each player now optimises her payoff by selecting actions that are under
her control. How this is determined is actually the subject matter of non-cooperative game theory. As such,
non-cooperative game theory is the most pristine expression of the principle of methodological individualism
that lies at the foundation of most of contemporary microeconomics.

The second fundamental approach is known as cooperative game theory and allows players to write binding
contracts. This changes the analysis and interpretation of a game radically. Indeed, if binding agreements can be
written, all players collectively will pursue the maximisation of the total wealth that can be generated within the
social decision situation at hand. A binding contract then determines how this generated wealth is distributed
among the various players in this interactive decision situation.

Thus, the main objective of cooperative game theory is to determine a “just” or “well-supported” contract
between all players to divide the total wealth generated collectively. Such a contract can be based on pure
bargaining power or solely on fairness considerations or mixtures of both power and fairness.

Although non-cooperative and cooperative game theory are fundamentally separated through the accep-
tance of the hypothesis of allowing binding contracts, in technical terms the various representations of interactive
decision situations span these two approaches.

Normal form non-cooperative games There are two main conceptions to represent non-cooperative interac-
tive decision making. The term “non-cooperative” indicates that decisions are made in full independence and
by each decision maker solitarily. The term “interaction” refers here to the idea that decisions of individual
decision makers directly affect each others’ well-being.

The fundamental method of description that informs our analysis in this text is that of the normal form
game. A normal form game is a mathematical representation of direct strategic interaction among multiple
players, where each player makes decisions independently without any explicit communication or coordination.
Here are the defining characteristics of a normal form non-cooperative game:

Players — A non-cooperative game involves two or more players. Each player is considered to be rational and
self-interested, aiming to maximise their own payoff or utility.

Actions — Each player has a set of actions or strategies available to them. An action—also referred to as a
“strategy” in much of the literature—represents a complete plan of action, specifying what choices the
player will make in all possible situations or contingencies.

Payoffs — There is a payoff or utility associated with each possible combination of actions chosen by the play-
ers. Payoffs represent the players’ preferences and can be expressed in terms of monetary values, points,
or any other relevant measure.
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1.1 What is game theory?

Simultaneity of decisions — In a normal form game, players make their decisions simultaneously, without
knowing the choices made by other players. They select their actions independently, based on their own
preferences and beliefs about other players’ behaviour.

Information — Players have complete information about the game’s rules, actions or strategies available to
them, and the payoffs associated with different outcomes. However, they may have imperfect or asym-
metric information about other players’ preferences, strategies, or past actions.

Focus on Nash equilibrium conception — The concept of Nash equilibrium is central to non-cooperative game
theory. A Nash equilibrium occurs when no player can unilaterally change their strategy to improve their
own payoff, given the strategies chosen by other players. It represents a stable state of the game where no
player has an incentive to deviate.

These characteristics define the basic framework of a normal form non-cooperative game, allowing for the anal-
ysis of strategic decision-making and the prediction of likely outcomes based on rational behaviour.

The limitation of the normal form representation in comparison with the extensive form representation has
a significant advantage in that the analysis is much more transparent. In particular, the number of equilibrium
concepts is limited since only a few of such concepts are meaningful. This relates strongly to the centrality of
the Nash equilibrium conception, as mentioned above. More powerful insights can therefore be established in
the context of the normal form.

Extensive form games The normal form representation of non-cooperative interactive decision making stands
in contrast to the second conception, the extensive form game. An extensive form game is a mathematical
representation of strategic interaction among multiple players, where players make decisions sequentially, and
the timing and order of their actions are explicitly represented. Here are the defining features of a game in
extensive form:

Players — An extensive form game involves two or more players, just like a normal form game. Each player is
rational and self-interested, aiming to maximise their own payoff or utility.

Sequential decisions — Unlike a normal form game, an extensive form game represents the sequential nature
of decision-making. Players take turns to make decisions, and the timing and order of their actions are
explicitly represented by a tree-like structure called a game tree.

Game tree — The game tree is a graphical representation of the extensive form game. It consists of nodes,
which represent decision points, and branches, which represent the possible choices or actions available
at each decision point. The tree starts with a single node called the root, representing the initial state of
the game, and branches out to subsequent nodes as players make decisions.

Information sets — In an extensive form game, players may have imperfect or asymmetric information about
the actions taken by previous players. To capture this, information sets are used to group together nodes
that are indistinguishable to a player based on their available information at that point. It represents a
player’s lack of knowledge about which node they are at within the information set.

Strategies — In an extensive form game, players choose strategies rather than specific actions at each decision
point. A strategy represents a complete plan of action, specifying what choice the player will make at
every decision point, given their available information.

Payoffs — Similar to a normal form game, there are payoffs or utilities associated with each possible outcome
of the game. Payoffs represent the players’ preferences and can be expressed in terms of monetary values,
points, or any other relevant measure.
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1.1 What is game theory?

Perfect information and imperfect information games — An extensive form game can be further classified
into perfect information and imperfect information games. In a perfect information game, each player
knows the exact history of actions and can observe the actions taken by previous players. In an imperfect
information game, players may have private information or uncertain knowledge about the actions taken
by previous players.

These defining features of an extensive form game allow for the modelling of sequential decision-making, the
representation of imperfect and asymmetric information, and the analysis of strategies that involve both actions
and timing. Game theory uses these features to study strategic interaction and predict likely outcomes in such
games.

In extensive form games, there are several equilibrium concepts that extend and complement the Nash
equilibrium concept used in normal form game analysis. The main equilibrium concepts for extensive form
games are as follows:

Subgame perfect equilibrium (SPE): A subgame perfect equilibrium requires that players’ strategies consti-
tute a Nash equilibrium at every subgame of the overall game. A subgame is a portion of the game that
starts from a decision node and includes all subsequent actions stemming from that node. SPE captures
the idea that players’ strategies should be optimal not only at the initial decision points but also at every
decision point within the game, taking into account possible future actions and the possibility of commit-
ment.

Sequential equilibrium: Sequential equilibrium is a refinement of subgame perfect equilibrium that takes into
account off-path beliefs. It allows for the possibility that players may have beliefs about other players’ off-
equilibrium strategies and incorporate those beliefs into their decision-making. A sequential equilibrium
requires that players’ strategies are optimal not only on the equilibrium path but also off the equilibrium
path, assuming consistency of beliefs and rational behaviour.

Perfect Bayesian equilibrium (PBE): Perfect Bayesian equilibrium combines the notions of sequential ratio-
nality and consistency with Bayesian updating. In a PBE, players’ strategies are not only optimal given
the actions of other players but also incorporate beliefs about other players’ actions and the players’ own
imperfect information. A PBE requires strategies to be sequentially rational at every information set and
consistent with players’ beliefs, taking into account both actions and nature’s moves.

Comparing these equilibrium concepts to Nash equilibrium in normal form game analysis:

(i) Nash equilibrium: Nash equilibrium is a fundamental concept in both normal form and extensive form
games. It represents a set of strategies where no player has an incentive to unilaterally deviate, given
the strategies chosen by others. In normal form games, Nash equilibrium captures the idea of simul-
taneous decision-making. However, in extensive form games, Nash equilibrium does not fully capture
the sequential nature and the considerations of commitment and information sets.

(ii) Perfect Bayesian equilibrium: Perfect Bayesian equilibrium is specific to extensive form games and
incorporates the idea of sequential rationality and players’ beliefs about others’ actions. It takes into
account the players’ imperfect and asymmetric information and captures the idea of consistent decision-
making at every information set.

(iii) Subgame perfect equilibrium: Subgame perfect equilibrium is a refinement of Nash equilibrium for
extensive form games, requiring optimality not only at the initial decision points but also at every
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decision point within the game. It ensures that players’ strategies are optimal even in subgames that
might occur after deviations from the equilibrium path.

(iv) Sequential equilibrium: Sequential equilibrium is another refinement of subgame perfect equilibrium
that considers off-path beliefs. It allows for the possibility of players having beliefs about off-equilibrium
strategies and incorporating those beliefs into their decision-making.

These equilibrium concepts in extensive form games provide more refined predictions and capture additional
strategic considerations compared to the Nash equilibrium in normal form games, accounting for the sequential
nature of decision-making, information sets, and players’ beliefs.

Potential form games In this text, we primarily focus on normal form games as our starting point. Normal
form games are a fundamental concept in game theory and provide a solid foundation for our exploration. How-
ever, within normal form games, we can identify specific sub-classes known as potential form games.

A potential form game is a type of normal form game where the payoff structure can be summarised using
a single mathematical function or relationship. In these games, the players’ actions collectively contribute to a
global “potential function,” which represents the overall payoff or utility for all players involved.

In a potential form game, each player’s individual payoff or utility depends solely on their own action and
the global state of the game, which is encapsulated by the potential function. This potential function assigns a
numerical value to each possible combination of actions, ensuring that the sum of these values for each player’s
chosen action profile equals the total potential value of the game.

There are various ways in which the payoff structures can be summarised through a potential function,
leading to different types or subclasses of potential form games. One such type is an exact potential game,
where the potential function precisely determines the payoffs for each player. Here, the potential function assigns
specific numerical values to each possible combination of actions, allowing the players to have complete and
precise knowledge of their payoffs.

Conversely, an ordinal potential game is another type of potential form game where the potential function
only determines the ranking or ordering of the payoffs, without specifying their exact values. In an ordinal
potential game, players are aware of the relative superiority or inferiority of different action profiles but lack
knowledge about the precise numerical differences between them. For instance, a player may know that one
action profile is better than another, but they are uncertain about the exact magnitude of the difference.

By exploring and understanding potential form games, we gain insight into how players’ actions contribute
to a global potential function, thereby influencing the overall outcomes and payoffs in these types of games.3

Sources on the theory of games and game forms There are numerous textbooks on game theory and asso-
ciated solution concepts. The field originated in the seminal work of Neumann and Morgenstern (1947), which
defined the field and the conceptions that still determine this field of scientific pursuit.

For textbook treatments, I restrict myself to themain established texts. A good textbook for those unfamiliar
with the subject I refer to Osborne (2004). For more advanced treatments of the subject I refer to Fudenberg
and Tirole (1991), Myerson (1991), Osborne and Rubinstein (1994), Owen (2013), Vega-Redondo (2003), and

3The main difference between an exact and an ordinal potential game is the level of information available to the players about their
payoffs. In an exact potential game, players have precise knowledge of their payoffs, while in an ordinal potential game, players only
know the ordering of their payoffs. This difference in information can have significant implications for the behaviour of the players and
the outcomes of the game.
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Maschler, Solan, and Zamir (2013). There is no dedicated textbook treatment of the subject of potential form
games.

1.2 Formalising normal form games

In our exploration of potential games, we confine our discussion to the normal form representation. The nor-
mal form is the most straightforward mathematical model for an interactive decision-making scenario involving
rational agents. This form integrates a “pre-game” with a detailed mathematical depiction of the payoffs received
by all participants in the decision-making process. The pre-game component enumerates the decision-makers,
known as “players”, along with their available actions. The normal form, thus, serves as a comprehensive frame-
work, combining the set of players and their respective strategies with the payoff functions that determine the
outcomes of their interactions. This concise structure enables a clear and precise analysis of strategic interactions
among intelligent agents, making it an essential tool for studying potential games in a rigorous manner.

Hence, a normal form game is a mathematical model of an interactive decision situation that consists
of three elements: (i) the decision makers, referred to as “players”; (ii) player actions that can be chosen and
executed by the decisionmakers, and; (iii) a payoff structure that associates chosen actionswith resulting utilities,
payouts and rewards.

We restrict ourselves mainly to “finite” games, where decision situations are described that involve a given
finite number of decision makers. In specifically denoted sections, we might consider continuum games, which
refer to theoretical constructs in which a large mass of decision makers are involved. These sections will be
indicated specifically and explicitly throughout this text.

1.2.1 Pre-games: Players and actions

Game theory is firmly rooted in the hypothesis that in interactive decision situations, the described decision
makers are intelligent or rational. This means that decisions are made considerately and deliberately. In fact,
throughout we assume that a normal form game is amodel of interactive decision-making inwhich each decision-
maker chooses his plan of action once and for all, and these choices are made simultaneously; that these choices
are guided by aims or the achievement of goals; and that decision makers are acting prescriptively and follow a
specified model of decision making.

An intelligent or rational decision maker is referred to as a player. A player is essentially a mathematical
point or node to which can be assigned elements that describe the decision making processes related to that
decision maker. Formally, players are introduced through a player set:

N = {1, . . . , n} with n ∈ N. (1.1)

Here, n ∈ N denotes the number of players or decision makers involved in the decision situation under consid-
eration. The player set is a defining, specific setting on which the decision situation is described.

The next element of the model is which decisions a particular decision maker can select from. It is assumed
that each player is assigned a specified set of actions from which she can choose. Throughout we assume that
each player has at least two potential actions to choose from. Also, it is assumed that selecting “no action”
is itself an action if such is feasible and potentially rational in the described decision situation. The nature of
an action is open and it can refer to a certain quantity, but also to an arbitrarily complex procedure such as a
computer programme in a certain programming language.
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For each player i ∈ N we denote her assigned action set by Ai. In principle, the action set Ai is arbitrary
and can consist of any number of actions from which player i chooses. We emphasise that this assignment is a
part of the modelling of the decision situation under consideration.

Players and their assigned actions are brought together in a structure that is referred to as a normal form
pre-game. The pre-game omits a description of the consequences of the decisions made by the players. This is
formalised in the next definition.

Definition 1.1 (Pre-games)

♣

Let N = {1, . . . , n} with n ∈ N be a finite set of players.

(a) A (normal form) pre-game on N is a list (Ai)i∈N = (A1, . . . An) of action sets assigned to all
the players in N , where Ai with |Ai| > 2 is the action set of player i ∈ N .

(b) A pre-game (Ai)i∈N on N is finite if for every player i ∈ N the associated action set Ai is a finite
set.

(c) In a pre-game (Ai)i∈N on N , an profile is an ordered list or action tuple a = (a1, . . . , an) with
ai ∈ Ai an assigned action for player i ∈ N .

(d) For a pre-game (Ai)i∈N , we define the profile space as A =
∏

i∈N Ai = A1 × · · · × An =

{(a1, . . . , an) | ai ∈ Ai for all i ∈ N} the Cartesian product of all players’ action sets, being the
set of all profiles in the pre-game.

The high level of abstraction of this pre-game model allows it to be applied to a wide variety of situations.
A player may be an individual human being or any other decision-making entity like a government, a board
of directors, the leadership of a revolutionary movement, or even a flower or an animal. The model places no
restrictions on the set of actions available to a player, which may, for example, contain just a few elements or be
a huge set containing complicated plans that cover a variety of contingencies.

The next example describes a number of situations that are represented as pre-games. We describe the
decision makers as players and the actions that they can choose from.

Example 1.1 We consider a number of decision situations that can be represented as pre-games. The next
examples indicate the wide variety of possibilities for representing decision situations as such.
The “rock-paper-scissors” game: Consider two persons with opposing views on a certain collective decision.

They could settle their dispute by playing the simple “rock-paper-scissors” game. This can be represented
as a two-player game, with N = {1, 2}, each given the same decision set: A1 = A2 = {R,P, S}. Here,
“R” stands for the action of selecting Rock; “P” stands for the action of selecting Paper, and; “S” stands
for the action of selecting Scissors. Consequences of selection of these actions will be discussed later in
Example 1.3.

A simple voting game: Consider a bowling club that holds a general meeting to determine whether their weekly
bowling evening should move from a Wednesday to a Thursday. If there are n = 34 members, we can
represent the vote on this proposed measure as a pre-game with 34 players, each having three actions at
their disposal, namely to vote “YES”, to vote “NO”, or to “ABSTAIN”. Hence, the player set is N =

{1, . . . , 34} and for each player i ∈ N : Ai = {YES,NO,ABSTAIN }. Alternatively, we could use a
numeric representation of these choices by letting Ai = {−1, 0, 1}, where ai = −1 interprets as voting
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“NO”, ai = 0 interprets as voting “ABSTAIN”, and ai = 1 interprets as voting “YES”.4

We do not discuss the results of these elections, since these depend on the exact rule used to determine a
profile. Some of such rules and procedures are discussed later in Example 1.3.

Provision of a collective good: Consider a home owners association that wants to provide a playground to its
members on the privately owned grounds in the association’s neighbourhood. Funds for this project will
be raised through voluntary contributions from the households that are member of the association.
If there are n > 2 members of this association, we can model this situation as a pre-game with player set
N = {1, . . . , n} and action sets Ai = [0,Mi] ⊂ R+, for every player i ∈ N , where Mi > 0 denotes
the available income is household i ∈ N . How the raised funds are exactly spent is omitted from the
description of the decision situation as a pre-game. We refer to Example 1.3 for further discussion.

A Cournot duopoly: Consider a duopolistic market with two competing firms that produce an identical prod-
uct. Both firms compete through determining their respective output quantities. Assuming a linear inverse
demand function given by P = α − βQ, where α, β > 0 are demand parameters, P > 0 is the market
price, and Q > 0 is the total quantity supplied in the market, we can represent this competitive market
interaction as a pre-game. Indeed, the two firms are the sole decision makers, represented as player set
N = {1, 2}. Each firm i = 1, 2 selects an output level Qi ∈ Ai = [0, α]. The total quantity provided in
the market is now determined as Q = Q1 +Q2.

The examples above represent just a few cases of the variety of applications of this simple interactive decision
model. �

The fact that the model is so abstract is a merit to the extent that it allows applications in a wide range
of situations, but is a drawback to the extent that the implications of the model cannot depend on any specific
features of a situation. Indeed, very few conclusions can be reached about the outcome of a game at this level
of abstraction; one needs to be much more specific to derive interesting results.

The examples of the provision of a collective good as well as the Cournot duopoly as discussed above in
Example 1.1 give rise to the definition of a certain class of pre-games, namely the ones with specific mathe-
matical structures. In particular, it is widely accepted to consider games in which action sets have the standard
Euclidean topological and ordinal structures. Hence, actions are themselves “vectors” in a Euclidean space and
can be compared with each other through tools such as the Euclidean distance and the standard ordering of
vectors in Euclidean spaces.

Euclidean pre-games The next definitions introduce the necessary mathematical tools to introduce this im-
portant class of pre-games.5

�

Mathematical notes Let k ∈ N be some natural number. The k-dimensional Euclidean vector space Rk is the
set of all k-dimensional vectors that is endowed with the topology generated by the standard Euclidean norm:

x ∈ Rk is a vector x = (x1, . . . , xk) where xm ∈ R are real valued entries for all m = 1, . . . , k.

The Euclidean norm of a vector x ∈ Rk is defined as ‖x‖ =
√∑k

m=1 x
2
m.

The Euclidean distance between two vectors x, y ∈ Rk is defined by d(x, y) = ‖x− y‖. We remark that
d : Rk×Rk → R+ is a metric on Rk that generates the standard Euclidean topology on this vector space.

4Other numerical representations of these actions are also possible. Actually, every triple of numbers a, b, c ∈ R could be used to describe
these three actions as long as these three numbers are different.

5I refer to some standard textbooks on linear algebra, in particular linear vector spaces, by Axler (2015, 2020) and Strang (2021) for
further details of the mathematics of topological vector spaces.
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With regard to the ordering of the k-dimensional Euclidean space, we use standard notation and define for any
pair of vectors x, y ∈ Rk the following relationships:

x > y if and only if xm > ym for all m = 1, . . . , k;
x > y if and only if x > y and xm > ym for at least one m ∈ {1, . . . , k}, and;
x � y if and only if xm > ym for all m = 1, . . . , k.

These relationships define the standard Euclidean ordering on the vector space Rk. �

Using these notions, we now introduce two important topological notions that help us properly define a
relevant class of pre-games on a player set. These notions are that of convergence and closedness of subsets in
Euclidean spaces.

�

Mathematical notes Let Rk be some k-dimensional Euclidean space.
A sequence in Rk is an ordered subset {xm ∈ Rk | m ∈ N}—usually denoted as (xm)m∈N ⊂ Rk.6

The sequence (xm)m∈N ⊂ Rk converges to a vector x ∈ Rk if it holds that for every ε > 0 there exists
some N ∈ N such that ‖x− xm‖ < ε for every m > N . It is also said that x is the limit of the sequence
(xm)m∈N. If the sequence (xm)m∈N converges to x ∈ Rk we denote this as xm → x.
A subset S ⊂ Rk is called closed in the Euclidean topology if for every convergent sequence (xm)m∈N ⊂
S with xm → x, it holds that x ∈ S. Hence, every limit of a convergent sequence in S is an element of S.
A subset S ⊂ Rk is called compact in the Euclidean topology if S is closed and bounded in the sense that
there exists some B > 0 such that ‖x‖ < B for all x ∈ S.

These standard Euclidean topological concepts are also set out in Apostol (1974). �

These additional mathematical tools help us define the notion of a specific class of pre-games, which are
founded on the topological structure of Euclidean spaces. These pre-games can be referred to as Euclidean to
distinguish them from the general class of pre-games.

Definition 1.2 (Euclidean pre-games)

♣

A pre-game (Ai)i∈N on the finite player set N is a Euclidean pre-game if for every player i ∈ N , the
action set Ai is a closed subset of some finite dimensional Euclidean vector space, i.e., Ai ⊆ Rki for
some ki ∈ N.
In a Euclidean pre-game the profile set A is a closed subset of a finite dimensional Euclidean vector
space as well. Indeed, the profile set A =

∏
i∈N Ai ⊆ Rk is closed in the Euclidean topology on Rk,

where k =
∑

i∈N ki ∈ N.

It is clear that the provision of a collective good pre-game and the Cournot pre-game as discussed in Exam-
ple 1.1 are indeed Euclidean pre-games. Both represent decision situations in which players have a continuum
of actions, clearly defined as real numbers. Therefore, the basic premise of a Euclidean pre-game is satisfied.

On the other hand, the class of Euclidean pre-games is much wider. Our discussion of pre-games with finite
action sets for all players can also be understood as a Euclidean pre-game. In particular, this has been shown
directly for the simple voting game in which the three actions “YES”, “NO”, and “ABSTAIN” are replaced by
the numbers 1, −1 and 0, respectively.

This conversion can be applied to any pre-game with finite action sets for all players. This requires a
straightforward transformation of the action sets into the real number line.

6In particular, we remark that the real number space R itself is a Euclidean vector space endowed with the standard (absolute) norm | · |
and the standard linear order on the real line.
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1.2 Formalising normal form games

Proposition 1.1

♠All finite pre-games are Euclidean.

Proof Consider a pre-game (Ai)i∈N on the player set N such that for every player i ∈ N the assigned action
setAi is finite. In particular, letAi = {a1i , . . . , aimi

}, wheremi ∈ N is the number of actions available to player
i. Now we convert Ai into the corresponding Euclidean action set Bi = {1, . . . ,mi} ⊂ N. Hence, this shows
that the finite action set is equivalent to some (finite) Euclidean set.
Let A =

∏
i∈N Ai be the finite profile set in the original pre-game and let B =

∏
i∈N Bi ⊂ RN . Define the

mapping χ : B → A by χ(b) =
(
ab11 , ab22 , . . . , abnn

)
, which assigns to a numerical representation b the (unique)

corresponding profile χ(b) ∈ A in the original game. It is clear that χ(B) = A and χ−1(A) = B, showing
that χ is indeed a one-to-one bijection between A and B.
This shows that the pre-game (Bi)i∈N is a transformation of the original pre-game (Ai)i∈N . Since (Bi)i∈N is
a Euclidean pre-game, it follows that the original (finite) pre-game (Ai)i∈N is mathematically equivalent to a
Euclidean game, showing the asserted property. ¶

The conclusion from the above is that all finite games are in principle Euclidean. This implies that all
games discussed in Example 1.1 are either Euclidean or can be represented as a Euclidean game.

From the above it should be clear that any non-Euclidean pre-game cannot be finite and the players’ actions
have an infinite nature. We discuss a few examples of such non-Euclidean pre-games next.

Example 1.2 Let N = {1, 2} be a player set with two players. We consider the following pre-games for two
players.
Simplified bargaining Consider a multi-round bargaining situation where two players negotiate about splitting

a cake, using “demands” as the main communicating device. Assuming the size of the cake is one, the
bargaining process consists of an indeterminate number of rounds. In each round t ∈ N, player 1 puts
forward a demand αt ∈ [0, 1], while player 2 puts forward βt ∈ [0, 1]. The bargaining terminates in period
t if and only if αt + βt 6 1, i.e., the bargaining concludes when it is feasible to pay out the demands of
both players.
To structure this as a normal form pre-game, we are required to introduce actions that can be executed
throughout the bargaining process. For that purpose we introduce actions that are infinite tuples of de-
mands. Hence, for player 1 an action would be given by a1 = (αt)t∈N ∈ A1 = [0, 1]N and for player 2
an action can be modelled as a2 = (βt)t∈N ∈ A2 = [0, 1]N.
Clearly, this is not a Euclidean pre-game, since the action sets A1 = A2 = [0, 1]N are infinitely dimen-
sional vector spaces.

Advanced financial duopoly During the past decade, financial trade technology has made significant advances
with the introduction of trade algorithms as well as “artificial intelligence” (AI). These technologies help
financial brokers to trade in financial capital markets at the speed of light with nano-second trade periods.
This has resulted in anomalous trade patterns in these markets. We can give the following description of
a pre-game model of such a market with two traders.
Consider the players to be two brokers in a system of financial markets with multiple assets ` = 1, . . . ,m,
where m is sufficiently large. A trade is now a list of net trades τ = (τ1, . . . , τm) ∈ Rm. Trades are
put to the market system by both traders and are reconciled through a well-defined and well-described
demand and supply reconciliation system.7 An action is now a computer programme or Turing machine

7I omit here a full description of such a market mechanism, but it can be formulated using standard expressions from market economics.
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1.2 Formalising normal form games

in computer language “L” that uses past trades as inputs and determines a trade. An action set is now the
collection of all theoretically possible actions—or computer programmes in “L”—as described.
Clearly, the action set consists of arbitrarily complex computer programmes that cannot properly be ex-
pressed in numerical terms, let alone as finite Euclidean vectors. Therefore, this pre-game is also non-
Euclidean.

�

1.2.2 Normal form games: Payoff structures

In standard game theory, the specification is completed by adding a payoff structure to a pre-game to create
a normal form or strategic game. A payoff structure assigns to every profile in the pre-game a certain numerical
value for every individual player in the pre-game. Hence, a payoff structure evaluates every profile of the pre-
game through the assignment of a (real) numerical value. The interpretation of this evaluation is left open in
the definition of a normal form game. Indeed, the assigned values or “payoffs” can be interpreted cardinally as
well as ordinally.

Payoffs as cardinals means that they describe real values such as monetary amounts or profiles on a nu-
merical scale of measurement such as temperatures, weights, or lengths. This implies that computations and
manipulations can be performed on these cardinal payoffs, appropriate according to the interpretation given to
these cardinal values.

On the other hand, ordinal payoffs are interpreted as tools in ranking profiles: a profile with a higher payoff
is preferred over a profile with a lower payoff. This implies that no computations and manipulations can be
performed with these payoffs; they are just numerical values that represent ordinal rankings.

The next definition introduces a formalisation of a payoff structure on a pre-game and brings the pre-game
together with a payoff structure into a “game”.

Definition 1.3 (Normal form games)

♣

Let N = {1, . . . , n} be a finite set of players.

(a) A payoff structure on a pre-game (Ai)i∈N on player set N as defined in Definition 1.1 is a list
(πi)i∈N with for every player i ∈ N , an assigned payoff function πi : A → R that links to every
profile a = (a1, . . . , an) ∈ A =

∏
i∈N Ai a payoff πi(a) ∈ R to player i ∈ N .

We can also denote a payoff structure on a pre-game (Ai)i∈N as an n-dimensional mapping
π = (π1, . . . , πn) : A → RN .

(b) A (normal form) game on player set N is a combination of a pre-game (Ai)i∈N and a payoff
structure (πi)i∈N denoted as (Ai, πi)i∈N .
Throughout we use the symbolic notation Γ = (N,A, π) to denote a normal form game on player
set N . A game Γ on player set N is also known as an “n-player game”.

(c) The space of n-player games is defined as

GN = {Γ | Γ = (N,A, π) is a normal form game on N } (1.2)

The universal game space is the set of all finite player games defined by

G =
⋃

N∈N
GN (1.3)

with N = {N | N = {1, . . . , n} for some n ∈ N }.
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1.2 Formalising normal form games

Pre-games form only an abstract representation and description of the foundational social interaction struc-
ture between the players involved. This is completed by a payoff structure in the normal form game. We note
that payoffs introduce subjective assessments of the profiles of the interactive decision situation represented
through the pre-game. These payoffs assign numerical values to all profiles in the pre-game. Therefore, payoffs
are based on the consequences of the decision making process represented in the pre-game.

A normal form game is much more comprehensive a description of a social interactive decision situation.
It not only describes the interaction structure, but also introduces an individualistic, subjective assessment of
the profiles of this interactive decision process. This introduces the possibility to talk about purposeful decision
making, leading to a model of “rational” decision making in a normal form game. Indeed, the assigned payoffs
introduce a ranking of profiles that give direction to the decision process for each individual player.

Normal form games can be enhanced with elements that describe outside events such as changes in the
“state of the world” through random events. It is then assumed that decisions are made before the state of the
world is established. Payoffs are then replaced by expected payoffs to make rational decision making possible.

Example 1.3 We consider the pre-games introduced in Example 1.1.
The “rock-paper-scissors” game: Recalling the RPS pre-game described in Example 1.1, we have to introduce

a payoff structure that reflects the standard ordinal ranking of actions: R beats S; S beats P, and; P beats
R. All equal choices are a draw.
The payoff structure π : {R,P, S} × {R,P, S} → R2 should reflect this ranking. Hence, π represents a
purely ordinal ranking and should not be construed as being cardinal.
We can describe π as follows:

π(R,R) = π(S, S) = π(P, P ) = (0, 0)

π(R,S) = π(S, P ) = π(P,R) = (1,−1)

π(S,R) = π(P, S) = π(R,P ) = (−1, 1)

It is clear that the payoff structure of this game is based on the assignment of only three numerical values,
0, 1 and −1, which are used to rank profiles.
The payoff structure can also be represented in the form of a table. The vertical dimension is the choice
of the first player, while the horizontal dimension represents the choice of the second player. This results
in a two-dimensional payoff grid:8

R P S

R 0, 0 −1, 1 1,−1

P 1,−1 0, 0 −1, 1

S −1, 1 1,−1 0, 0

A game with two players and a finite number of actions for each of these players is also known as a matrix
game, since any payoff structure can be represented as a table or matrix as depicted for the Rock-Paper-
Scissors game.

A simple voting game: In the voting game described in Example 1.1, decisions are made based on majority

8In this matrix, we use the convention that player 1 is the row player, selecting the R-, P - or S-row in the matrix, while player 2 is the
column player, selecting the R-, P - or S-column in the matrix. Each entry in this matrix represents a unique profile in this game fro
(R,R) through (S, S). In the corresponding field, we put the payoffs of both players, using the rue that the first payoff is that of the first
player (the “row player”) and the second payoff is that of the second player (the “column player”). Hence, π(R,R) = (0, 0) is entered
in the upper left corner field corresponding to the profile (R,R). All other payoffs are linked to profiles in a similar fashion.
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1.2 Formalising normal form games

for a certain decision. We consider here two different methods to put this in practice, a simple and an
absolute majority rule.9

Simple majority rule — Under a simple majority rule, we can use numerical expressions of votes (ai ∈
{−1, 0, 1} for all i ∈ {1, . . . , 34}, as used in Example 1.1) to introduce a mathematical expression.
Indeed, the group goes ahead with the move of the bowling evening to Thursday if and only if

34∑
i=1

ai > 1.

This rule expresses that there ismajority ofYES-votes in comparisonwithNO-votes. Note that ABSTAIN-
votes are not really counted. This translates to a payoff structure that expresses this decision in a payoff,
for example, as follows:

πi(a) =

{
αi if

∑34
i=1 ai > 1

βi if
∑34

i=1 ai 6 0

where (αi, βi) ∈ R2 denote the individual payoffs assigned by player i ∈ N to the two possible collective
decisions.
Absolute majority rule — Under the absolute majority rule, the bowling club goes ahead with moving the
bowling evening to Thursday if and only if an absolute majority of at least 18 YES-votes is in favour of
the building of the playground. Hence, this leads in turn to a payoff structure given by

πi(a) =

{
αi if #{i ∈ N | ai = 1} > 18

βi if #{i ∈ N | ai = 1} 6 17

where (αi, βi) ∈ R2 again denote the individual payoffs assigned by player i ∈ N to the two possible
collective decisions.

Provision of a collective good: The most plausible decision rule for the home association is to build the play-
ground if and only if the collectively raised funds cover its construction cost. Hence, assume the cost of
building the playground is given by 0 < C 6

∑
i∈N Mi. Then, the association constructs a playground

if and only if ∑
i∈N

ai > C.

Assuming that players do not have any opportunity costs from using their budgetMi, this can be translated
into a payoff structure given by

πi(a) =

{
αi − ai if

∑
i∈N ai > C

βi if
∑

i∈N ai < C

where (αi, βi) ∈ R2 again denote the individual gross benefits assigned by player i ∈ N to the two
possible collective decisions of the playground being built or not.

A Cournot duopoly: A standard hypothesis in the Cournot duopoly model is that both firms are profit max-
imisers. If the two firms produceQ1 andQ2, respectively, then the resulting market price can be computed
as

P (Q1, Q2) = α− β (Q1 +Q2)

9It is clear that there are numerous alternative ways to make a decision about the collective project, each can be modelled through systems
of inequalities as described for these two decision rules.
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and the resulting profits are determined as

π1(Q1, Q2) = P (Q1, Q2) ·Q1 − c1(Q1)

π2(Q1, Q2) = P (Q1, Q2) ·Q2 − c2(Q2)

where c1, c2 : R+ → R+ are the cost functions of the two respective firms in this duopoly.
These examples of normal form games show how payoff structures give direction to and accommodate purpose-
ful behaviour of the players in their decision making processes. �

Normal form games clearly form a class of very powerful descriptive tools to describe and analyse social
interaction situations. It allows for the introduction of purposeful or “rational” behaviour, founding a form of
intelligent decision making. We discuss this in length in the next section of this chapter.

I conclude the discussion of normal form games with an extensive quotation from Osborne and Rubin-
stein (1994), which gives a concise and clear assessment of the purpose of normal form games. The Osborne-
Rubinstein textbook uses digressions and discussions on the usefulness of game theory and how to best interpret
these mathematical constructs. The following quotation is a discussion that provides a useful assessment of nor-
mal form games.10

Comments on interpretation

A common interpretation of a strategic game is that it is a model of an event that occurs only once;
each player knows the details of the game and the fact that all the players are “rational” [...], and
the players choose their actions simultaneously and independently. Under this interpretation each
player is unaware, when choosing his action, of the choices being made by the other players; there
is no information (except the primitives of the model) on which a player can base his expectation
of the other players’ behavior.
Another interpretation, which we adopt through most of this book, is that a player can form his
expectation of the other players’ behavior on the basis of information about the way that the game
or a similar game was played in the past [...]. A sequence of plays of the game can be modeled
by a strategic game only if there are no strategic links between the plays. That is, an individual
who plays the game many times must be concerned only with his instantaneous payoff and ignore
the effects of his current action on the other players’ future behavior. In this interpretation it is thus
appropriate to model a situation as a strategic game only in the absence of an intertemporal strategic
link between occurrences of the interaction. [...]
When referring to the actions of the players in a strategic game as “simultaneous” we do not neces-
sarily mean that these actions are taken at the same point in time. One situation that can be modeled
as a strategic game is the following. The players are at different locations, in front of terminals. First
the players’ possible actions and payoffs are described publicly (so that they are common knowledge
among the players). Then each player chooses an action by sending a message to a central com-
puter; the players are informed of their payoffs when all the messages have been received. However,
the model of a strategic game is much more widely applicable than this example suggests. For a
situation to be modeled as a strategic game it is important only that the players make decisions
independently, no player being informed of the choice of any other player prior to making his own
decision.

10I also refer to Hargreaves-Heap and Varoufakis (2004) for elaborate, critical assessments of game theory and the various mathematical
game forms used to describe social interactive decision making.
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1.2 Formalising normal form games

Osborne and Rubinstein (1994), Section 2.1.2, pages 13–14.

Euclidean games Having introduced the notion of a Euclidean pre-game in the previous section, we may
extend this particular definition to the realm of games as well. For this we need to introduce a fewmore auxiliary
mathematical concepts.

�

Mathematical notes Let (Ai)i∈N be some Euclidean pre-game on the player set N , where all action sets Ai

are closed subsets of some finite dimensional Euclidean vector space. The generated profile set A =
∏

i∈N Ai

is, therefore, also a closed subset of a finite dimensional Euclidean vector space.
For a player i ∈ N the payoff function πi : A → R is continuous at profile a ∈ A if for every convergent
sequence an → a in A we have that πi(an) → πi(a).
For a player i ∈ N the payoff function πi : A → R is continuous if πi is continuous at every profile
a ∈ A.

If the payoff functions πi are continuous on A for all players i ∈ N , then the (n-dimensional) payoff function
π : A → RN is continuous as well. �

We use these mathematical notions to introduce the notion of a Euclidean normal form game, usually
denoted simply as a Euclidean game. This is complemented with the notion of a compact game, in which all
action sets and the resulting profile set are compact in the Euclidean topology.

Definition 1.4

♣

A normal form game Γ = (N,A, π) ∈ GN on the player set N is Euclidean if the corresponding pre-
game (Ai)i∈N is Euclidean and for every player i ∈ N the payoff function πi : A → R is continuous on
A. The set of Euclidean games on N is denoted by

GN
E = {Γ ∈ GN | Γ = (N,A, π) is Euclidean }. (1.4)

A Euclidean game Γ ∈ GN
E is compact if for every player i ∈ N the action set Ai ⊂ Rki is compact in

the Euclidean topology on Rki . The set of compact (Euclidean) games on N is denoted by

GN
C = {Γ ∈ GN

E | Γ = (N,A, π) is compact }. (1.5)

Clearly, GN
C ⊂ GN

E ⊂ GN .

1.2.3 Nash equilibrium

The most common approach to define “rational behaviour” in the setting of a normal form game is through
the notion of Nash equilibrium (Nash (1950)). Through this notion, one has always perceived rationality in the
decision making processes in a normal form game. A Nash equilibrium represents a steady state in the game
play in which no individual player can improve his or her payoff. It represents the baseline profile from the
rational selection of actions by all players in the game, in the sense that it assumes intelligent decision making
that aims to optimise the profile for every player, given the payoff structure in the game.

To formalise this behavioural norm, we introduce some additional notation. Let (N,A) be a pre-game and
let a = (a1, . . . , an) ∈ A =

∏
i∈N Ai be some profile in that pre-game. Then for player i ∈ N we denote by

a−i the list of all players’ actions except the action of player i ∈ N . Hence,

a−i = (a1, . . . , ai−1, ai+1, . . . , an) ∈ A−i =
∏
j 6=i

Aj .
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This implies that for any i ∈ N : a = (ai, a−i) ∈ A. this means that player i ∈ N deviating from profile a ∈ A

to move to a modified profile in the pre-game can be represented by (bi, a−i) ∈ A, where bi ∈ Ai is the selected
alternative action by player i.

We can now formalise the notion of Nash equilibrium.

Definition 1.5 (Nash equilibrium)

♣

Let Γ = (N,A, π) ∈ GN be a normal form game. Then the profile a∗ ∈ A is a Nash equilibrium in Γ

if for every player i ∈ N it holds that

πi(a
∗) > πi(bi, a

∗
−i) (1.6)

for every action bi ∈ Ai.
The set of Nash equilibria in the game Γ ∈ GN is denoted by NE(Γ) ⊂ A.
The profile a∗ ∈ A is a strict Nash equilibrium in Γ if for every player i ∈ N it holds that

πi(a
∗) > πi(bi, a

∗
−i) (1.7)

for every alternative action bi ∈ Ai with bi 6= a∗i .

Nash equilibrium describes a stable state or profile in a game in the sense that no individual player has any
incentive to deviate from the chosen Nash equilibrium action. This represents a certain form of intelligence or
rationality on part of the players in the game.

This can be illustrated by considering a few simple games and determine the resulting Nash equilibria in
these games.

Example 1.4 Let N = {1, 2} be a two-player set. We consider the following two-player games to illustrate the
definition of the Nash equilibrium concept.

(i) One of the most well-known games is that of the “Prisoners’ Dilemma”. It refers to a decision situation
with two prisoners accused of a serious crime dealing with a prosecutor. If both of them do not talk
and are uncooperative, the prosecutor can only show a minor offence, resulting in a lenient sentence for
both of them. If one of the two prisoners confesses and the other prisoner remains silent, the prosecutor
will set the confessing prisoner free, while the other, silent prisoner is given a lengthy sentence. Finally,
if both players talk and confess, both will receive substantial sentences, though less than the lengthy
sentence.
This can be described by the same action set for both players, A1 = A2 = {C,D}—referred to as a
cooperative action “C” and a defecting action “D”.11 The assigned prison sentences can be described
in the following matrix:

C D

C −1,−1 −10, 0

D 0,−10 −5,−5

In this simple game (D,D) is the unique Nash equilibrium and that this Nash equilibrium is strict.
Indeed, π1(D,D) = −5 > πi(C,D) = −10 as well as π2(D,D) = −5 > π2(D,C) = −10. Note
that (C,C) is no Nash equilibrium since π1(C,C) = −1 < π1(D,C) = 0. Similarly, (D,C) and

11Here the cooperation considered is that with the other prisoner, not the prosecutor. Hence, “C” refers to solidarity with the fellow
prisoner and “D” refers to the abandonment of the other prisoner.
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(C,D) can be ruled out as Nash equilibria.

(ii) Consider the “Rock-Paper-Scissors” game as discussed in Example 1.3. In this matrix game, there
does not exist any Nash equilibrium. This can be checked for every potential profile (a1, a2, a3) ∈
{R,P, S}3. For example, (R,R) is not a Nash equilibrium since π1(P,R) = π2(R,P ) = 1 >

π1(R,R) = π2(R,R) = 0, hence both players prefer to deviate from selecting R by selecting P .
Furthermore, (P,R) is not a Nash equilibrium either, since π2(P, S) = 1 > π1(P,R) = −1, indicating
that player 2 would deviate from R by selecting S instead.

(iii) Next, consider the simple voting game under the simple majority rule as discussed in Examples 1.1 and
1.3. In principle there exist many Nash equilibria in this game, depending on the exact utilities (αi, βi)

for all i ∈ N . For an arbitrary value distribution over the 34 players, we determine a straightforward
voting strategy given by

âi =

{
1 if αi > βi

−1 if αi < βi
.

This straightforward voting strategy â ∈ A results in the move of the bowling evening to Thursday if
and only if#{i ∈ N | αi > βi} > #{j ∈ N | αj < βj}, implying that â is indeed a Nash equilibrium
of this game. Either, deviating from this voting strategy has no effect, or deviating would not improve
the profile of the vote for the individual player.
Assuming #{i ∈ N | αi > βi} > #{j ∈ N | αj < βj}, any profile ã ∈ A in which any player
j ∈ N with αj < βj switches to ãj = 1 instead of âj = −1 will change the profile of the vote. Hence,
ã is also a Nash equilibrium. This shows that this simple voting game admits in principle many Nash
equilibria.12

(iv) Finally, consider the the provision of a public good as discussed in Examples 1.1 and 1.3. Let N1 =

{i ∈ N | αi > βi} be the set of players that recognise the benefits of the playground. The complement
N2 = {j ∈ N | αj 6 βj} are the players that do not think building a playground is strictly beneficial
or desired. Note that N1 and N2 form a partition of N .
Note that, given the stated payoff function πi in Example 1.3, each player i ∈ N1 will contribute at
most āi = min{Mi, αi − βi} > 0 to the building project. Hence, the building project is actually
executed if and only if

∑
i∈N1

āi > C. In particular note that any financing strategy 0 6 âi 6 āi with∑
i∈N1

âi = C is a Nash equilibrium of this public good provision game.
This shows that this game has infinitely many Nash equilibria if and only if

∑
i∈N1

āi > C.

These examples show that there are games with no Nash equilibria, one equilibrium, a finite number of Nash
equilibria, or infinitely many Nash equilibria. �

The Nash equilibrium conception refers to that all players optimise their chosen action to maximise their
payoffs given the actions chosen by the other players. In this regard, these players “respond” optimally to what
other players have chosen. It reflects, therefore, best response rationality. Best response rationality is a particular
form of “intelligent” behaviour.

The next definition explores best response rationality. It introduces the mathematical tools to describe the
selection of optimal responses to other players’ actions.

12The reader is invited to carefully check these claims and the corresponding Nash equilibrium profiles.
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Definition 1.6 (Best responses)

♣

Let Γ = (N,A, π) be a normal form game and let i ∈ N be some player in Γ.

(a) Let a−i ∈ A−i. Then âi ∈ Ai is a best response to a−i if πi(âi, a−i) > πi(bi, a−i) for every
bi ∈ Ai, or

πi(âi, a−i) = max
bi∈Ai

πi(bi, a−i) (1.8)

(b) For a−i ∈ A−i, the best response set is defined by

Bi(a−i) = arg max
bi∈Ai

πi(bi, a−i) (1.9)

This introduces the best response correspondence for player i ∈ N by Bi : A−i → 2Ai . This
summarises as the best response correspondence B = (B1, . . . , Bn) : A → 2A for the game Γ.

It might be clear from these definitions that we introduce a particular form of intelligent decision making
here. Indeed, the previous definitions describe “best response rationality” in the behaviour of decision makers.
If a player decides to select a best response to what all other players are doing in the game, we can describe this
as that player follows strategising from a best response rationality point of view. It refers to the selection of an
action that optimises a player’s payoff function, given what all other players have selected.

If all players follow this form of rationality or intelligent behaviour, we would arrive at a stable state that is
founded on this best response rationality: A state in which all players select an action that optimises their payoffs,
given what all other players have selected. Hence, a∗ ∈ A is a stable state under best response rationality if for
every i ∈ N : a∗i ∈ Bi(a

∗
−i). Or, a∗ ∈ B(a∗). Therefore, the resulting stable state is a fixed point of the best

response correspondence.
In a strict Nash equilibrium this relationship to best response rationality is more stark. Indeed, players

will chose the single, unique best action in response to what the other players have chosen. Or, in terms of the
best response correspondence: a∗ ∈ A is a strict Nash equilibrium if and only if B(a∗) = {a∗}. Strict Nash
equilibrium is clearly a stronger form of stable state than a regular Nash equilibrium in the sense that deviating
from the Nash equilibrium action is costly.

The next theorem states that the set of stable states under best response rationality is exactly the set of Nash
equilibrium of the game. We state this result without a proof, which is rather straightforward.

Theorem 1.1 (Equivalent definition of Nash equilibrium)

♥

Let Γ = (N,A, π) be a normal form game. Then:

(a) a∗ ∈ A is a Nash equilibrium in Γ if and only if a∗ is a fixed point of the best response corre-
spondence B, i.e., a∗ ∈ B(a∗).

(b) a∗ ∈ A is a strict Nash equilibrium in Γ if and only if B(a∗) = {a∗}.

Best response rationality can be used quite easily to compute Nash equilibria of quite complex games. In
fact, it requires us to search for a fixed point of the best response correspondence of that particular game.

Example 1.5 Again let N = {1, 2} be a two-player set. We consider some games that illustrate how Nash
equilibrium can be found by computing fixed points of the best response correspondence.

(i) Consider the Cournot duopoly described in Example 1.3. We can write the resulting payoff functions
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as

π1(Q1, Q2) = αQ1 − βQ1(Q1 +Q2)− c1(Q1)

π2(Q1, Q2) = αQ2 − βQ2(Q1 +Q2)− c2(Q2)

To determine the best responses of the two firms in this game, we note that these payoff functions are
concave if the cost functions are weakly convex. Assuming this, a stationary points of these two payoff
functions exactly correspond to the optimal actions. Hence, we compute all those profiles (Q1, Q2)

such that π′
1(Q1, Q2) = π′

2(Q1, Q2) = 0.
As an example we let the cost functions for both firms be linear and given by c1(Q1) = γ1Q1 and
c2(Q2) = γ2Q2 satisfying the feasibility conditions γ1, γ2 ∈ [0, α]. We can determine the stationary
points for this particular case as described. This results in

π′
1(Q1, Q2) = α− γ1 − β(2Q1 +Q2) ≡ 0

π′
2(Q1, Q2) = α− γ2 − β(Q1 + 2Q2) ≡ 0

or

Q1 = B1(Q2) =
α− γ1 − βQ2

2β
=

α− γ1
2β

− 1
2Q2 (1.10)

Q2 = B2(Q1) =
α− γ2 − βQ1

2β
=

α− γ2
2β

− 1
2Q1 (1.11)

First, we note that this system of two equations describes the complete best response correspondence,
or in this case the best response function on R2

+. We can now solve the system of these two equations
(1.10) to find the fixed point of the best response function. This results into the Nash equilibrium13

proper given by
Q∗

1 =
α− 2γ1 + γ2

3β
and Q∗

2 =
α+ γ1 − 2γ2

3β

resulting into a total produced output in the market of Q∗ = Q∗
1 + Q∗

2 = 2α−γ1−γ2
3β > 0 and an

equilibrium market price P ∗ = P (Q∗) = 1
3 (α+ γ1 + γ2) 6 α.

(ii) Next, again consider the the provision of a public good discussed in Examples 1.1, 1.3 and 1.4. As
before, consider N1 = {i ∈ N | αi > βi} as the set of players that recognise the benefits of the play-
ground. The maximal contribution of player i ∈ N1 was determined asmin{Mi, αi−βi}. As a conse-
quence, we already established that the building project is executed if and only if

∑
i∈N1

min{Mi, αi−
βi} > C.
We can express this also through determining the best responses of the players in N1. It can be estab-
lished that the best response of player i ∈ N1 with regard to a−i ∈ A−i =

∏
j 6=iAj can be determined

as

Bi(a−i) =

{
max

{
0, C −

∑
j 6=i aj

}
if

∑
j 6=i aj > C −min{Mi, αi − βi}

0 if
∑

j 6=i aj < C −min{Mi, αi − βi}

where we recall thatmin{Mi, αi−βi} is the maximal amount that player i ∈ N1 is willing to contribute
to the collective good, in this case the construction of a playground. Note that indeed Bi(a−i) 6

min{Mi, αi − βi} for every i ∈ N1 as described above.

(iii) Coordination games form a specific class of normal form games in which players coordinate their

13Due to the historical origins of this market game and the fact that Cournot (1838) already determined and discussed this equilibrium,
we may also refer to this as the Cournot-Nash equilibrium in a duopoly.
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1.2 Formalising normal form games

actions to arrive at optimal profiles. The classical example is the coordination on a date. Two persons
can go to a James Bondmovie or otherwise go to a TomCruise movie, like some “Mission: Impossible”
incarnation. One person prefers James Bond over a Tome Cruise movie, but prefers either over not
meeting for a date. The other person has exactly opposite preferences, preferring Tom Cruise over
James Bond, but agreeing that not having a date is worse than either. This can be described as a matrix
game with both players have two strategies.
If one player is the row player, while the other player is the column player, this results in the following
matrix representation:

JB TC

JB 2, 1 0, 0

TC 0, 0 1, 2

From a best response perspective, JB is a best response to JB for both players, making (JB, JB) a Nash
equilibrium. Similarly, TC is a best response to TC for both players, implying that (TC,TC) another
Nash equilibrium.
The obvious problem in this coordination game is actually on which Nash equilibrium to coordinate.
Both of these Nash equilibria are actually socially optimal in the sense that there is no alternative
profile that makes both of them better off. It is impossible to advice both players on which equilibrium
to coordinate.

(iv) Next, we look again at the coordination game in (ii), but for two different players. Now we assume that
both players have exactly the same preferences over the two alternatives: Both prefer going to a James
Bond move over seeing a Tom Cruise feature. This can be represented by a matrix game described by

JB TC

JB 2, 2 0, 0

TC 0, 0 1, 1

Again (JB, JB) and (TC,TC) are the two Nash equilibria in this modified game. Now, however, the
equilibrium (JB, JB) results into uniformly higher payoffs for both players in comparison with the
alternative equilibrium (TC,TC). Hence, (JB, JB) Pareto dominates (TC,TC). This could function
as a determinant in guiding both players in their decision making and they can more easily coordinate
their actions on the Pareto optimal equilibrium (JB, JB).

These four examples the use of best response rationality, not only in computing the resulting equilibria, but also
in the more detailed analysis of the behaviour of the players in the game. �

1.2.3.1 Interpretations of the Nash equilibrium concept

The Nash equilibrium concept is the quintessential equilibrium conception in game theory and is used in
many applications of game theory to related fields such as computer science, biology, and economics. The
reasons that the Nash equilibrium conception plays such a crucial role is that it has some important properties
and interpretations. This is explored in many publications and textbooks.14 I summarise some arguments about

14For example, I refer here to the discussions in Osborne and Rubinstein (1994, Chapters 2–5), Maschler, Solan, and Zamir (2013, Section
4.9) and Bonanno (2018, Section 2.6). For a philosophical discussion and treatment, I also refer to Weirich (1998).
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1.2 Formalising normal form games

the usefulness of the Nash equilibrium concept here as well.
Behavioural stability The foremost reason that Nash equilibrium is such a useful conception is that it represents

a natural outcome of self-motivated behaviour under ignorance. Given that an individual player does not
really know the reasoning process followed by other players in a game, she most naturally will take the
observed behaviour of the other players as given. Therefore, it is most natural to select the action that
optimises the outcome for every player taking the actions of the other players as given and immutable.
Hence, the Nash equilibrium profile becomes a naturally “expected” outcome of the game and it is founded
in all players’ ignorance about their respective behaviour.
This interpretation allows the Nash equilibrium to be interpreted as a meta-solution: The stability property
is one that we would like every natural and reasonable solution conception to exhibit.
The Nash equilibrium concept can, therefore, be interpreted as a minimal behavioural benchmark. It is
the most pure and natural form of “selfish” intelligent behaviour, namely founded in the logic of selecting
the optimal action if all other players’ actions are taken as given.

A self-confirming agreement A second interpretation of the Nash equilibrium concept is that through the re-
lated notion of a self-confirming equilibrium as put forward by Fudenberg and Levine (1993). Here, an
“agreement” is interpreted as a non-binding settlement between the players. No player will deviate from
the proposed agreement because there is no possibility to benefit from such a deviation. This is particu-
larly convincing in the context of the class of coordination games. In this regard, “self-confirming” can
also be re-stated as “self-fulfilling”.

A normative recommendation One can consider a strategic form game also from a normative point of view.
Suppose that there is an impartial arbitrator or regulator that oversees the interactions represented by the
game. In this case, the arbitrator has to propose to all decision makers (the players) how they should
behave. One would expect the arbitrator’s proposal to be a Nash equilibrium, i.e., an outcome that cannot
be undermined by opposition from individual decision makers. In a Nash equilibrium this is indeed not
the case, since individual players have no benefit from deviation from the suggested action.
The problem of arbitration arises if there are multiple Nash equilibria in the game under consideration.
In that case, secondary considerations enter the debate for selecting a recommended profile. The Nash
equilibrium conditions become a minimal requirement, rather than the sole consideration for selecting a
certain profile.

from the discussion above it should be clear that the Nash equilibrium concept is a natural outcome that functions
as a minimal requirement for any consideration of play in a strategic form game. There has arisen a wide-ranging
literature on equilibrium conceptions with discussions on what rationality or intelligent behaviour exactly entails
in the context of strategic form games. These contributions make clear that the Nash equilibrium concept is a
benchmark, but that other considerations can be important as well. Hence, even if a game has a unique Nash
equilibrium, it might not be the “best” or “recommended” way to select actions in that game. (I refer here to
the Prisoners’ Dilemma game discussed in Example 1.4.) This is besides the obvious issues that arise about
equilibrium in games that have no Nash equilibrium or have multiple Nash equilibria. In those games, other
criteria—besides Nash’s best response rationality—play a critical role in assessing how players ought to behave
or actually will behave.
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1.2 Formalising normal form games

1.2.3.2 Properties of Nash equilibria

If a normal form game is Euclidean or compact, there result some interesting properties of Nash equilibria.
In particular, a game being Euclidean implies specific topological properties of the set of Nash equilibria of that
game, while compactness and additional convexity conditions guarantee the existence of Nash equilibria of such
a game. For a proof of the first insight I refer to Section 1.4.1.

Theorem 1.2

♥

Let Γ = (N,A, π) ∈ GN
E be a Euclidean game on the player set N . Then the set of Nash equilibria

NE(Γ) ⊂ A is a closed set in the Euclidean topology on the profile space A.
If additionally Γ is a compact Euclidean game, then the set of Nash equilibria NE(Γ) ⊂ A is a compact
set in the Euclidean topology on the profile space A.

Existence of Nash equilibrium Nash (1951) seminally showed that Nash equilibria exist for a particular class
of normal form games that can be denoted as mixed extensions of games with finite action sets. This was
proceeded by results published by Debreu (1952), Fan (1952), and Glicksberg (1952) that generalised Nash’s
seminal result. We state this result as follows. For a proof of this result I refer to the last section of this chapter.
For the more general existence result we recall some mathematical definitions.

�

Mathematical notes For the statement of Existence Theorem 1.3, we have to introduce some auxiliary math-
ematical concepts. For that purpose, let Γ = (N,A, π) be some Euclidean game such that for every player
i ∈ N the action set Ai is a nonempty closed subset of a finite dimensional Euclidean space and the payoff
function π is continuous on A. For this setting, we recall the following mathematical notions on the concavity
of payoff functions.

For i ∈ N the payoff function πi is concave in ai if for all ai, bi ∈ Ai and a−i ∈
∏

j 6=iAj it holds that
πi(λai + (1− λ)bi, a−i) > λπi(ai, a−i) + (1− λ)πi(bi, a−i).15

Finally, for i ∈ N the payoff function πi is quasi-concave in ai if for all ai, bi ∈ Ai and a−i ∈
∏

j 6=iAj

it holds that πi(λai + (1− λ)bi, a−i) > min {πi(ai, a−i), πi(bi, a−i)}.
For the mathematical analysis of concave functions and related subjects, I refer to Rockafellar (1970). �

We can now state the Debreu-Fan-Glicksberg existence theorem. For a complete proof of this (historically)
important result I refer to Section 1.4.2.

Theorem 1.3 (Existence of Nash equilibrium)

♥

Let Γ = (N,A, π) ∈ GN
C be a compact Euclidean game such that the following additional conditions

are satisfied:

(i) For every player i ∈ N the action set Ai is a nonempty, compact and convex subset of a finite
dimensional Euclidean space;

(ii) For every player i ∈ N the payoff function πi : A → R is continuous in every profile a ∈ A

and quasi-concave in every action ai ∈ Ai.

Then the game Γ admits at least one Nash equilibrium.

15I note that every concave function on a Euclidean space is continuous. This implies that all games consisting of a Euclidean pre-game
endowed with a concave payoff function are actually Euclidean.
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The literature on strategic form games has developed more general Nash equilibrium existence results for
non-Euclidean action sets. These contributions are usually mathematically much more advanced and rely on
arguments regarding more general topological spaces. This textbook is not really the proper venue to provide
an overview of these results.

1.3 Introducing potentials: Potential form games

The idea of a potential function was first applied in the 19th century in physics and mathematics. The
main idea behind potential theory is that one can analyse certain mathematical constructs and models using a
single function—referred to as the potential function. In 19th century physics potential theory was mainly used
to summarise different forces in a physical setting in a single potential function. This mainly referred to the
modelling of gravity and electrostatic forces through potential functions.

In game theory potential functions have been introduced to describe all payoff information in a non-
cooperative game, in particular a normal form game and characteristic function games, representing cooper-
ative games. The main seminal contributions in game theory are the papers by Hart and Mas-Colell (1989)
and Monderer and Shapley (1996). Hart and Mas-Colell (1989) introduced potential functions for the class of
cooperative function in characteristic function form, which is subject of the later chapters of this text. Monderer
and Shapley (1996) focussed on potential functions in the context of normal form games, which is the subject
of study in this section and the subsequent chapters.

Hart and Mas-Colell (1989) pointed out a strong relationship between potential functions of cooperative
games with the Shapley value (Shapley (1953)) of these games. Ui (2000) subsequently discovered that there
was also a strong link between a non-cooperative game admitting a Monderer-Shapley potential function and
the Shapley value of an associated cooperative game.

Non-cooperative games and potential functions The main idea is that a potential function summarises or
captures essential information about a corresponding payoff structure on this pre-game. This is implemented
through a potential function that assigns real numbered values to all action profiles in the underlying pre-game.
Hence, the essential payoff structural features of a normal form game can be represented by such a potential
function. More generally, we can introduce the notion of a potential function on any pre-game as set out in the
following definition.

Definition 1.7 (Potential form games)

♣

Let (Ai)i∈N be some pre-game on the finite player set N . A function Ψ: A → R is referred to as a
potential function on the pre-game (Ai)i∈N .
The triple ΓΨ = (N,A,Ψ), where (Ai)i∈N is a pre-game on player set N and Ψ: A → R is a potential
function on this pre-game, is denoted as a potential form game.

A potential form game can be interpreted as a standard normal form game in which all players have been
assigned identical payoff functions, namely the potential function itself. Hence, ΓΨ = (N,A,Ψ) can be inter-
preted as a normal form game (N,A, π) where πi = Ψ for all players i ∈ N . These particular type of games
are also known as “coordination games” or “team games”.

As before we can introduce specific classes of potential form games. The most obvious class is the one that
is based on the properties of Euclidean vector spaces.
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1.3 Introducing potentials: Potential form games

Definition 1.8 (Euclidean potential form games)

♣

Let ΓΨ = (N,A,Ψ) be a potential form game with potential function Ψ: A → R.

(i) The potential form game ΓΨ is Euclidean if the underlying pre-game (Ai)i∈N is Euclidean and
the potential function Ψ: A → R is continuous on A.

(ii) The potential form game ΓΨ is compact if ΓΨ is Euclidean and the profile space A =
∏

i∈N Ai

is a compact set in some finite dimensional Euclidean space.

A consequence of Proposition 1.1 is that every potential form game in which all players have finite action
sets is Euclidean as well as compact. This is stated in the next corollary.

Corollary 1.1

♥Every finite potential form game is compact.

When a potential form game is infinite, it may be Euclidean or non-Euclidean. For a potential form game to
be non-Euclidean, it is clear that actions need to be of rather complex a nature. This has already been discussed
for Euclidean (pre-) games. The next example considers a nice quadratic potential form game.

Example 1.6 Consider an interactive decision situation with two players, represented by N = {1, 2}. Further-
more, take any pair of numbers α,M ∈ R with M > 0. We now construct a potential form game Γ(α,M) with
a potential function Ψα.
In this potential form game, both players are assigned exactly the same action set given byA1 = A2 = [−M,M ].
Hence, the profile space is given as A = [−M,M ]2 ⊂ R2.
Second, we introduce a quadratic potential function Ψα : [−M,M ]2 → R by

Ψα(a1, a2) = 2αa1a2 − a21 − a22

Note that the generated potential form game Γ(α,M) =
(
N, [−M,M ]2,Ψα

)
is compact. In fact, the potential

function Ψα is clearly twice differentiable on the relative interior of the profile space A◦ = (−M,M)2. �

1.3.1 Defining equilibrium in potential form games

The concept of Nash equilibrium can be applied to the class of potential form games, interpreted as normal
form games with all players having identical payoff functions. Due to the particular payoff structure of a potential
form game—represented by a single potential function—these Nash equilibria are exactly the class of “saddle
points” of the potential function.

We simply refer to these saddle points as equilibria of the corresponding potential form game.16 The notion
of equilibrium for potential form games is formalised in the next definition.

Definition 1.9
Let ΓΨ = (N,A,Ψ) be a potential form game with potential function Ψ: A → R.
A profile â ∈ A is an equilibrium in ΓΨ if for every player i ∈ N :

Ψ(bi, â−i) 6 Ψ(â) (1.12)

for every alternative action bi ∈ Ai.

16Indeed, in a potential form game, there is no reason to denote an equilibrium point as a “Nash equilibrium” to distinguish it from other
forms of equilibrium. As shown later in this text, these equilibrium points are representing other equilibrium conceptions as well.
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1.3 Introducing potentials: Potential form games

♣The set of all equilibria in ΓΨ is denoted by E(ΓΨ) ⊂ A.

We note that from the definition there emerge three types of equilibria of Euclidean potential form games.
First, there are the pure saddle points of the potential function. These are stationary profiles17 that are neither a
minimum nor a maximum of the potential function. Second, all maxima of the potential functions are equilibria.
Third, there might be points on the boundary of the profile space as a subset of a Euclidean vector space that
exhibit the properties of a saddle point.

The first two types of equilibria are quite common in Euclidean potential form games. In fact, the set of
maxima of the potential function is considered to be a “refinement” of the equilibrium concept for potential
form games. This is subject to the next notes.

�

Mathematical notes Consider a Euclidean potential form game ΓΨ = (N,A,Ψ) such that the potential
function Ψ is twice differentiable on the relative interior of A◦.18 For every profile a ∈ A◦ we denote these first
and second order derivatives by

DΨ(a) =

(
∂

∂a1
Ψ(a), . . . ,

∂

∂an
Ψ(a)

)
and

D2Ψ(a) =


∂2

∂a21
Ψ(a) · · · ∂2

∂a1∂an
Ψ(a)

... . . . ...
∂2

∂an∂a1
Ψ(a) · · · ∂2

∂a2n
Ψ(a)

 ,

respectively.
Using these concepts, we can now characterise some sufficient conditions for some profile in the relative interior
of the profile space to be an equilibrium or a potential maximiser.

A stationary profile of the potential function Ψ is any profile a ∈ A◦ at which the derivative is zero, i.e.,
such that DΨ(a) = 0. Stationarity of a profile is a prerequisite for a profile to be a saddle point or a
maximum or a minimum of the potential function.19 As identified, equilibria are either saddle points or
maximisers of the potential function Ψ.
Secondary conditions can help us find equilibria in the potential form game. Indeed, a profile â ∈ A◦ is
an equilibrium of ΓΨ if â is a stationary point of the potential function Ψ such that for every player i ∈ N

the equilibrium action âi ∈ A◦
i is a global maximiser for the i-th dimensional restriction of Ψ given by

Ψ(â1, . . . , âi−1, ·, âi+1, . . . , ân) : Ai → R.
This is the case if for every i ∈ N :

∂2

∂a2i
Ψ(â1, . . . , âi−1, bi, âi+1, . . . , ân) 6 0 for every bi ∈ Ai.

The secondary conditions on the second order derivatives D2Ψ(â) of Ψ at â guarantee that all one-
dimensional restrictions of Ψ at â are concave one-dimensional functions, implying that any stationary
point on that one-dimensional restriction is actually a global maximiser.20

17A profile a ∈ A is stationary if the derivative of the potential function is zero in that profile, i.e., DΨ(a) = 0.
18Here we use the notation that S◦ refers to the relative interior of a set S ⊂ Rk in the k-dimensional Euclidean real vector space.
19For details on the calculus of functional optimisation I also refer to Apostol (1974), Chapter 13, and the mathematical appendix of Jehle
and Reny (2011), A2.2.

20We remark here that the continuity of Ψ on the total profile space A now implies that â is indeed a global maximiser on Ai, not just on
its relative interior A◦

i , for every i ∈ N .
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1.3 Introducing potentials: Potential form games

Finally, using additional secondary conditions, a profile â ∈ A◦ is a (global) maximiser of ΓΨ if â is
a stationary point of Ψ such that the second order derivative D2Ψ(a) 6 0 is negative semi-definite for
every profile a ∈ A◦.21

The latter condition implies that the potential function Ψ is concave on A, implying that any interior
stationary point is necessarily a maximiser. Note that concavity of the potential function refers here to
a multi-dimensional property rather than the one-dimensional concavity referred to in the above notes
about equilibria.
In particular, the secondary condition implies that for every i ∈ N the corresponding partial second
order derivatives ∂2

∂a2i
Ψ(â1, bi, âi−1, ·, âi+1, . . . , ân) 6 0 is non-positive for all bi ∈ A◦

i . Hence, every
(global) maximiser of Ψ is definitely an equilibrium of ΓΨ.

From the above we conclude that it might be that certain equilibrium profiles of Ψ are not (global) maximisers.
Therefore, the set of maximisers of Ψ forms a subset of E(ΓΨ), possibly even a strict subset. Hence, potential
function maximisers form an equilibrium refinement of the standard equilibrium concept for potential form
games. �

These notes only concern the profiles in the relative interior A◦ of the profile space A. There might be
equilibria andmaximisers of the potential functionΨ on the boundary of the profile space ∂A. The next example
exhaustively analyses the quadratic potential function in a two-player potential form game already introduced in
Example 1.6.

Example 1.7 Consider the potential form game Γ(α,M) =
(
N, [−M,M ]2,Ψα

)
introduced in Example 1.6,

where the profile space is given by A = [−M,M ]2 ⊂ R2 and the potential function is the quadratic form
Ψα(a1, a2) = 2αa1a2 − a21 − a22.
First, we note that on A◦ = (−M,M)2 it holds that

DΨα(a) = ( 2αa2 − 2a1 , 2αa1 − 2a2 )

and

D2Ψα(a) =

[
−2 2α

2α −2

]
.

On the relative interior A◦ = (−M,M)2 ⊂ R2 we can now compute all stationary points of the potential
function Ψα for any α ∈ R. Indeed, all stationary points are determined by the system of two linear equations{

2αa2 − 2a1 = 0

2αa1 − 2a2 = 0

This is equivalent to {
αa2 = a1

αa1 = a2

This leads to the following insights regarding the nature of the stationary points of Ψα :

â = (0, 0) is a stationary point for all α ∈ R

âβ = (β, β) with −M < β < M are stationary points for α = 1

âγ = (γ,−γ) with −M < γ < M are stationary points for α = −1

From the second order derivatives we note immediately that all stationary points in (−M,M)2 are actually

21A k×k-matrix T is said to be negative semi-definite if all its eigenvalues are non-positive. Hence, for all non-zero vectors x ∈ Rk \{0}
and real values λ ∈ R with Tx = λx it holds that λ 6 0. Equivalently, the matrix T is negative semi-definite if and only if the
corresponding quadratic form QT (x) = xTTx 6 0 is non-positive for every x ∈ Rk.
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equilibria, since ∂2

∂a21
Ψα = ∂2

∂a22
Ψα = −2 < 0 on (−M,M). Hence, the partial second order derivatives

being negatives implies that all stationary points are maximisers of the two one-dimensional restrictions of the
potential function Ψα for any α ∈ R.
Next, we note that the second order derivative of Ψα is independent of the profile at which it is evaluated.
Therefore, the determinant of the second order derivative of Ψα is computed as detD2Ψα(a) = (−2)2 −
(2α)2 = 4 − 4α2 for any a ∈ (−M,M)2. Hence, with the previous, a stationary point â ∈ (−M,M)2 is a
maximiser of Ψα if and only if D2Ψα(a) 6 0 for all a ∈ (−M,M)2 if and only if detD2Ψα(a) > 0 for all
a ∈ (−M,M)2 if and only if α2 6 1 if and only if −1 6 α 6 1.
We conclude thatΨα has a unique (strict) global maximiser â = (0, 0) for−1 < α < 1. This is also the unique
interior equilibrium of Γ(M,α) for M > 0 and −1 < α < 1.

On the other hand, the potential form gameΨα also admits a number of equilibria on the boundary of the profile
space [−M,M ]2. In particular, we identify the following additional equilibria on this boundary:

α < −1: Besides the equilibrium â = (0, 0), which is a true saddle point of Ψα, we identify (−M,M)

and (M,−M) as global maximisers of Ψα with Ψα(M,−M) = Ψα(−M,M) = −2(α + 1)M2 > 0

and, therefore, as additional equilibria.
We emphasise here that in these cases â = (0, 0) is an equilibrium that is not a (global) maximiser of the
potential function Ψα.
α = −1: All profiles (γ,−γ) with −M 6 γ 6 M are identified as equilibria of Γ(M,α), where all
(γ,−γ) are global maximisers of Ψα with Ψα(γ,−γ) = 0.
−1 < α < 1: The profile â = (0, 0) is the unique equilibrium of Γ(M,α) as well as the unique maximiser
of Ψα with Ψα(0, 0) = 0.
α = 1: All profiles (β, β) with −M 6 β 6 M are identified as equilibria of Γ(M,α), where all (β, β)
are global maximisers of Ψα with Ψα(β, β) = 0.
α > 1: Besides the equilibrium â = (0, 0), which is a true saddle point of Ψα, we identify (−M,−M)

and (M,M) as global maximisers of Ψα, with Ψα(M,M) = Ψα(−M,−M) = 2(α − 1)M2 > 0 and,
therefore, as additional equilibria.
Again we note here that in these cases â = (0, 0) is an equilibrium that is not a (global) maximiser of the
potential function Ψα.

This simple example of a potential form game shows that a wide variety of equilibria can emerge. In particular,
we note for some values of the parameter α all equilibria are potential maximisers, while for other parameter
values of α the set of potential maximisers is a strict subset of the set of equilibria E(Γ(M,α)). In the latter case,
the subset of potential function maximisers forms a proper refinement of the set of the potential form game
equilibria. �

1.3.2 Nash potential games

The fundamental idea behind the introduction of potential functions and potential form games is that some
relevant information regarding a normal form game can be “summarised” in a corresponding potential func-
tion. Hence, for a normal form game there can be constructed a corresponding potential form game that fully
summarises the relevant information about that game.

The benefits of such a construction are that computation of relevant equilibria in the corresponding potential
form game can be donemuch easier than in the original normal form game. This is particularly useful in dynamic
social decision situations that require continuous updating of equilibrium actions.
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In this and the next chapters of this text we will explore the various constructs that can be applied to connect
normal form games with corresponding potential form games. This refers to identifying classes of normal form
games that can to a certain degree be represented through a well-constructed potential function.

Here I introduce the most basic construct of potential form representation, namely the representation of
equilibria only. More precisely, a normal form game is a “Nash potential game” if one can construct a potential
function that fully represents the Nash equilibria of the original normal form game. Hence, one can construct a
potential function that generates a set of equilibria equal to the set of the Nash equilibria of the original normal
form game.

This is formalised in the next definition, which originates in Voorneveld (1999, Section 7.5).

Definition 1.10 (Nash potential games)

♣

A normal form game Γ = (N,A, π) is a Nash potential game if there exists some potential function
Ψ: A → R such that for the corresponding potential form game ΓΨ = (N,A,Ψ) it holds that E(ΓΨ) =

NE(Γ), i.e., â ∈ A is a Nash equilibrium of Γ if and only if â is an equilibrium of ΓΨ.

It is appropriate to explore a few examples of potential form games and to investigate the form that these
constructed potential functions assume. This is the subject of the next example, which discusses some of the
examples considered in Examples 1.1 and 1.3.

Example 1.8 We again consider some of the games explored in Examples 1.1, 1.3 and 1.4. In particular, we
investigate whether these games are Nash potential games and what form the corresponding potential functions
take. For that purpose let the player set be given by N = {1, 2} as before.

(i) Recall the Rock-Paper-Scissors game discussed before. Both players had identical action sets A1 =

A2 = {R,P, S} with payoffs given in the matrix representation

R P S

R 0, 0 −1, 1 1,−1

P 1,−1 0, 0 −1, 1

S −1, 1 1,−1 0, 0

This finite game has no Nash equilibrium.
For this RPS-game to be a Nash potential game, one needs to construct a potential function Ψ: A1 ×
A2 → R such that E(Ψ) = ∅. I argue that this is impossible.
Indeed, any assignment of numerical values Ψ to fields in the matrix depicted above will assign a
highest or “maximal” value to at least one of these fields. Hence, Ψ would attain a maximum. So, we
conclude that the corresponding maximisers are equilibria of the potential form game based on this
potential function Ψ.
In fact, one can now conclude that, since every potential function on any finite profile set always attains
a maximum, the corresponding maximisers are equilibria of the corresponding potential form game.
Hence, the set of equilibria of every finite potential form game is always non-empty.

(ii) Consider the simple voting game discussed in Examples 1.1, 1.3 and 1.4(iii). The variations of this
game—depending on the exact votingmechanism considered—are example of finite normal form games
that admit Nash equilibria. For these games, one can formulate a potential function showing that these
games are Nash potential games. Indeed, for such a finite game Γ with NE(Γ) 6= ∅ consider the
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potential as the indicator or characteristic function of the set of Nash equilibria:

Ψ(a) = χNE(Γ)(a) =

{
1 if a ∈ NE(Γ)

0 if a ∈ A \ NE(Γ)
.

It is clear that all Nash equilibrium profiles â ∈ NE(Γ) 6= ∅ are the potential maximisers and all other
profiles a /∈ NE(Γ) are potential minimisers. This implies that NE(Γ) = E(ΓΨ), showing that every
finite game that admits Nash equilibria is actually a Nash potential game.

(iii) Next, we consider the collective good provision game. Recall that we have n players, action sets Ai =

[0,Mi] with Mi > 0 for every i ∈ N , and payoffs given by

πi(a) =

{
αi − ai if

∑
N ai > C

βi if
∑

N ai < C

where αi, βi > 0 and C > 0 the total cost of providing the collective good or project. The actions are
interpreted as voluntary contributions to the provision of the collective project.
We can now fully characterise all Nash equilibria in this game. For that, we introduce the maximal
contribution to the collective project that a player is willing to make. For i ∈ N this is given by

āi = min {Mi, max {0, αi − βi} } ∈ Ai = [0,Mi].

In particular, āi = 0 if βi > αi, which corresponds to the player having no benefit from the collective
project. Using this maximal contribution we can characterise the Nash equilibria:

If
∑

N āi > C, then a profile â ∈ A is an equilibrium if and only if 0 6 âi 6 āi and
∑

N âi = C.
If
∑

N āi < C, then a profile â ∈ A is an equilibrium if and only if
∑

N âi < C.

We derive from this the set-theoretic description of the equilibria of this provision game. Define

A′ =
∏
i∈N

[0, āi] ⊆ A and A′
C =

{
a ∈ A′

∣∣∣∣∣∑
i∈N

ai > C

}
Clearly, A′ is the set of profiles that are feasible in terms of the players’ willingness to contribute to
the collective project and A′

C is the set of the feasible profiles that actually lead to the provision of
the collective project. Now the Nash equilibria are exactly the feasible profiles in which the collective
project is provided through exact financing:

NE =

{
a ∈ A′

∣∣∣∣∣∑
i∈N

ai = C

}
which forms the upper boundary of A′

C . Clearly, NE 6= ∅ if and only if
∑

N āi > C.

(iv) Turning to the Cournot duopoly, I use the formulation from Example 1.4(i). There the payoff structure
was generalised to be given by

π1(Q1, Q2) = αQ1 − βQ1(Q1 +Q2)− c1(Q1)

π2(Q1, Q2) = αQ2 − βQ2(Q1 +Q2)− c2(Q2)

where c1 and c2 are convex cost functions for both firms in the market.
This game has a structure that allows a much more advanced summary of the payoff structure into a
single potential function. Indeed, we can device a potential function P : R2

+ → R that exactly repre-
sents the payoff differences if both firms change their respective output level. Such an exact potential
function can be constructed as

P (Q1, Q2) = α(Q1 +Q2)− βQ1Q2 − βQ2
1 − βQ2

2 − c1(Q1)− c2(Q2).
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Now we note that22

P (Q1, Q2)− P (Q′
1, Q2) = π1(Q1, Q2)− π1(Q

′
1, Q2) for all Q1, Q

′
1 > 0 and Q2 > 0

as well as

P (Q1, Q2)− P (Q1, Q
′
2) = π2(Q1, Q2)− π2(Q1, Q

′
2) for all Q2, Q

′
2 > 0 and Q1 > 0.

This implies immediately that the equilibria for the corresponding potential form game are exactly the
same as the Nash equilibria of this duopoly. Hence, the duopoly is a Nash potential game for the exact
potential function P .
On the other hand, the potential function P captures much more information of this game than just the
Nash equilibria. Indeed, the function P captures the complete payoff structure. This can be exploited
to use algorithms to easily find the Nash equilibria of the duopoly through the potential function. This
is the subject of the next chapter in this text.

These examples show clearly the intricacies of constructing potential functions with the pre-game structures of
these games to represent the payoffs introduced. �

The class of potential form games is very broad as confirmed by the next theorem. This theorem confirms
that essentially only the class of finite games that do not admit any Nash equilibria is not a subclass of the broad
class of Nash potential games. The next theorem generalises Theorem 7.9 of Voorneveld (1999).

Theorem 1.4

♥

Let Γ = (N,A, π) be some normal form game. Then the following statements hold:

(a) If Γ admits at least one Nash equilibrium, i.e., NE(Γ) 6= ∅, then Γ is a Nash potential game.

(b) If there is some player j ∈ N with an infinite action set Aj and Γ admits no Nash equilibrium,
i.e., NE(Γ) = ∅, then Γ is a Nash potential game.

(c) If for every player i ∈ N the action set Ai is a compact set and Γ is a Nash potential game for
some continuous potential function Ψ: A → R, then Γ admits at least one Nash equilibrium,
NE(Γ) 6= ∅.

A proof of Theorem 1.4 is developed in Section 1.4.3 below.
The first assertion of Theorem 7.9 in Voorneveld (1999) now follows immediately from Theorem 1.4(a)

and (c), since all finite sets are trivially compact and all functions on finite sets are trivially continuous. This is
stated as the following corollary.

Corollary 1.2 (Theorem 7.9, Voorneveld, 1999)

♥

If Γ = (N,A, π) is a finite normal form game, then Γ is Nash potential game if and only if Γ admits at
least one Nash equilibrium, NE(Γ) 6= ∅.

Properties of Euclidean Nash potential games are generally stronger than arbitrary Nash potential games.
The next theorem addresses the existence of continuous potential functions for Euclidean games that admit Nash
equilibria. A proof of Theorem 1.5 is developed in Section 1.4.4.

22Showing these equalities is left to the interested reader.
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Theorem 1.5

♥

Let Γ = (N,A, π) be a Euclidean normal form game that admits Nash equilibria, i.e., NE(Γ) 6= ∅.
Then there exists a continuous potential function Ψ: A → R such that E(ΓΨ) = NE(Γ).

Some remarks on potentials and Nash potentials I introduced the notion of a potential game as a vehicle
for further development and usage in the main body of this text. The notion of a potential game can be used
in the study of non-cooperative games in normal form that satisfy much stronger properties. This results in
certain properties that underpin the relationship between the payoff structure of some normal form game and
the potential function in the potential game representation of that game.

The class of Nash potential games is actually the broadest class of games that can be related to representative
potential form games. A Nash potential game has a set of Nash equilibria that relates directly to the set of
equilibria of the corresponding potential form representation of that Nash potential game. Hence, the potential
function links the Nash equilibria of the Nash potential game and the equilibria generated by that potential
function. In short, a Nash potential game allows its Nash equilibria to be represented by a corresponding potential
function.

This is a rather weak property, also evidenced by the broadness of the class of Nash potential games shown
in Theorem 1.4. This further indicates that the informational benefits from the representation of a Nash potential
game is rather limited. Using the proof set out in the next section, the construction of a representative and
corresponding potential function with a Nash potential game shows that the potential function does not contain
any additional information about the payoff structure of the represented game. More precisely, the potential
function measures the topological or metric properties of the set of Nash equilibria of the represented game.
This excludes any additional insights regarding the payoff structure of that game.

The next chapters develop more insightful representations of normal form games through potential func-
tions. In the next chapter I set out the development of so-called exact potential games in which there is maximal
information about the payoff structure represented through the corresponding potential function. Clearly, the
class of exact potential games is rather small, signifying that the requirements are quite demanding and that
the informational content of the potential function representation of the game is substantial. This is also clear
from the number of strong properties that these games satisfy. This ranges from the structure of Nash equilib-
ria through the possibility to compute Nash equilibria through simple learning algorithms. These insights are
explored throughout this text.

Subsequent chapters introduce further classes of normal form games with less informative representations
through potential functions. This results in larger classes of games, indicating the less informative value of these
potential function representations. The properties of these classes of games are weaker as well, leading to less
straightforward analysis of the structure of their Nash equilibria and increased complexity of learning algorithms
to compute equilibria.

1.4 Proofs of Theorems and Propositions

1.4.1 Proof of Theorem 1.2

Let Γ = (A, π) ∈ GN
E be a Euclidean game on the player set N and let NE(Γ) ⊂ A be the set of Nash

equilibria of Γ. If NE(Γ) = ∅, it trivially follows that this set of compact and, therefore, closed.
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Next, assume thatNE(Γ) 6= ∅. To show thatNE(Γ) is a closed set, we show that every convergent sequence
in NE(Γ) has its limit contained in NE(Γ).

Take some convergent sequence (an)n∈N in NE(Γ) with an → a ∈ A. Then by the fact that an is a Nash
equilibrium of Γ, for every player i ∈ N and every alternative action bi ∈ Ai : πi(a

n) > πi(bi, a
n
−i). By taking

the limit of (an) on both sides of this weak inequality, the continuity of player i’s payoff function πi implies that
πi(a) > πi(bi, a−i). Hence, since i ∈ N and bi ∈ Ai are arbitrary, this shows that a ∈ NE(Γ). Hence, NE(Γ)
is closed.

Finally, if the game Γ is compact, the compactness of A implies that the closed set of Nash equilibria
NE(Γ) is actually compact. This completes the proof of Theorem 1.2.

1.4.2 Proof of Theorem 1.3

In this subsection we set out the standard proof of the existence of Nash equilibria in normal form games
with compact action sets. This requires the use of the theory of correspondences. We summarise only the
elements of this theory that are required for the proof of the existence of Nash equilibrium. For elaborate
treatments of the theory of correspondences I refer to Hildenbrand (1974), Klein and Thompson (1984) and
Aubin and Frankowska (1990).

Throughout we let X be a nonempty, convex and compact set in a finite dimensional Euclidean space.
Furthermore, we assume that Φ: X → 2X is a set-valued correspondence on X such that Φ(x) ⊂ X is a
compact and nonempty set, i.e.,Φ is said to be nonempty- and compact-valued. We note that the next definitions
are explicitly restricted for the type of correspondence considered here.

The correspondence Φ is called upper hemi-continuous (UHC) if for every sequence xn → x ∈ X and
every sequence yn in X with yn ∈ Φ(xn) for every n ∈ N, it holds that (yn) has a convergent subsequence that
converges to some y ∈ Φ(x).

Equivalently, the UHC property can be understood that the graph of the correspondence Φ is a closed set.
Hence, {(x, y) | y ∈ Φ(x)} ⊂ X2 = X ×X is a closed set in the corresponding Euclidean topology on X2.

Without proof we state the following well-known fixed-point theorem for correspondences in Euclidean
spaces. This theorem was seminally stated and proven by Kakutani (1941). Kakutani’s Theorem is used widely
throughout game theory to show the existence of equilibria.

Theorem 1.6 (Kakutani’s Fixed Point Theorem)

♥

Let X be some compact, convex, and nonempty set of some finite dimensional Euclidean space. Let
Φ: X → 2X be an upper hemi-continuous correspondence such that Φ(x) ⊂ X is compact, convex and
nonempty. Then Φ admits a fixed point x∗ ∈ X such that x∗ ∈ Φ(x∗).

The aim for the proof of Theorem 1.3 is to show that the best-response correspondence B : A → 2A satisfies
Kakutani’s Fixed Point Theorem 1.6. For that purpose we use the familiar notation A instead of X and B

instead of Φ. The proof of Theorem 1.3 proceeds through a number of intermediary steps that are formulated
as lemmas.

Lemma 1.1

♥The set A is a nonempty, compact and convex set in a finite dimensional Euclidean space.

Proof Indeed, since for every player i ∈ N her action set Ai is a subset of some di-dimensional Euclidean
space, it follows that the profile space A =

∏
i∈N Ai is a d1 × · · · × dn-dimensional Euclidean space.
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Furthermore, since for every player i ∈ N the action set Ai is nonempty, compact and convex, it follows
immediately that A =

∏
i∈N Ai is nonempty, compact and convex as well. ¶

Lemma 1.2

♥

For every profile a ∈ A the corresponding best-response set B(a) ⊂ A is nonempty, convex and com-
pact.

Proof Let a ∈ A be some profile.
First we note that B(a) 6= ∅. Indeed, for every i ∈ N by continuity of πi and Ai being nonempty and compact,
it follows from Weierstrass Theorem—which states that a continuous function assumes maxima in a nonempty,
compact set in a Euclidean space—that Bi(a−i) 6= ∅. Hence, B(a) =

∏
i∈N Bi(a−i) ⊂ A is nonempty as

well.
To show the convexity of B(a), let i ∈ N be some player. Take a′i, a′′i ∈ B(a−i) and denote

Mi = max
bi∈Ai

πi(bi, a−i) = πi(a
′
i, a−i) = πi(a

′′
i , a−i).

Let λ ∈ [0, 1]. Then by convexity of Ai it follows that âi = λa′i + (1 − λ)a′′i ∈ Ai and we have by the
quasi-concavity of πi in ai that

πi(âi, a−i) > λπi(a
′
i, a−i) + (1− λ)πi(a

′′
i , a−i) = Mi.

Hence, âi = λa′i + (1 − λ)a′′i ∈ Bi(a−i). This shows that Bi(a−i) is a convex set for every i′ ∈ N and,
therefore, that B(a) =

∏
i∈N Bi(a−i) is a convex set as well.

To show that Bi(a−i) is a closed set, let (ani )n∈N be some sequence in Bi(a−i). Hence, πi(ani , a−i) = Mi for
all n ∈ N. Furthermore, since Ai is compact, without loss of generality we may assume that (ani ) is convergent
with ani → ãi ∈ Ai. By continuity of πi it is immediately clear that πi(ãi, a−i) = Mi. Hence, ãi ∈ Bi(a−i),
which implies that Bi(a−i) is closed. Since i ∈ N is arbitrary, it follows that B(a) is a closed subset of A. By
compactness of A it can now be concluded that B(a) is indeed a compact set. ¶

Lemma 1.3

♥The correspondence B : A → 2A is UHC.

Proof It suffices to show that for every i ∈ N the best response correspondence Bi : A → 2Ai is UHC. For
that purpose let (an−i)n∈N be a sequence in

∏
j 6=iAj such that an−i → ã−i ∈

∏
j 6=iAj . Next, let ani ∈ Bi(a

n
−i)

be a corresponding sequence of best responses to this sequence of action profiles. Hence, for any bi ∈ Ai.

πi(a
n
i , a

n
−i) > πi(bi, a

n
−i). (1.13)

From the compactness of Ai, it can be assumed without loss of generality that ani → ãi ∈ Ai. By the conti-
nuity of πi and by taking simultaneous limits in inequality (1.13), we immediately conclude that πi(ãi, ã−i) >

πi(bi, ã−i) for any bi ∈ Ai. Hence, we conclude that ãi ∈ Bi(a−i), showing that Bi is indeed UHC. ¶

From the three lemmas above we conclude that Kakutani’s Fixed Point Theorem 1.6 indeed applies to the best
response correspondence B. Therefore, B has a fixed point, which is actually a Nash equilibrium of the game
Γ. This completes the proof of Theorem 1.3.

1.4.3 Proof of Theorem 1.4

Let Γ = (N,A, π) be some normal form game. We now show the validity of the three assertions in
Theorem 1.4 regarding the game Γ.
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Proof of assertion 1.4 (a)

Assume that Γ admits at least one Nash equilibrium and thatNE(Γ) 6= ∅. Define the functionF : A×NE(Γ) →
{0, 1, . . . , n} by

F (a, â) = #{i ∈ N | ai 6= âi} (1.14)

as the number of players that in a ∈ A do not select the Nash equilibrium â ∈ NE(Γ). We remark that F is
a well-defined function, since NE(Γ) 6= ∅, that assumes a finite number of values and that attains a maximum
and a minimum, even if A and NE(Γ) are infinite.
We introduce the potential function Ψ: A → {−n, . . . ,−1, 0} for every a ∈ A by

Ψ(a) = − min
â∈NE(Γ)

F (a, â) (1.15)

Note first that the potential function only attains non-positive integer values only.
Denote by ΓΨ = (N,A,Ψ) the corresponding potential form game for this potential function. Now we claim
that it holds that a ∈ E(ΓΨ) if and only if Ψ(a) = 0 if and only if a ∈ NE(Γ).

First, we remark that if ã ∈ NE(Γ), then by definition Ψ(ã) = 0. Second, if for a ∈ A we have that Ψ(a) = 0,
then again by definition a ∈ NE(Γ).
This implies that Ψ(â) = 0 if and only if â ∈ NE(Γ).

Furthermore, if Ψ(â) = 0, then obviously â is a Ψ-maximiser, which implies that â ∈ E(ΓΨ).
Next, suppose that for a ∈ A it holds that Ψ(a) < 0. Then Ψ(a) 6 −1. Take â ∈ NE(Γ) such that Ψ(a) =

−F (a, â) 6 −1. Therefore, there is at least one player that selects in a an action different from her Nash
equilibrium action in â. Thus, we may select i ∈ N such that ai 6= âi. Therefore,

F (a, â) = F ( (âi, a−i), â) + 1 > F ( (âi, a−i), â).

We now conclude that
Ψ(a) = −F (a, â) < −F ( (âi, a−i), â) 6 Ψ(âi, a−i).

This shows that a /∈ E(ΓΨ).
This implies that a ∈ E(ΓΨ) if and only if Ψ(a) = 0.

This shows that assertion.

Proof of assertion 1.4 (b)

Suppose that NE(Γ) = ∅ and let j ∈ N be such that Aj is an infinite action set. Take a countable selection in
Aj denoted by {anj | n ∈ N} ⊆ Aj consisting of different actions.
Next, we define the potential function Ψ: A → R by

Ψ(a) =

{
n if aj = anj
0 otherwise

(1.16)

Now we claim that E(ΓΨ) = ∅.
Indeed, for a ∈ A it holds that either aj = anj for some n ∈ N, orΨ(a) = 0. In either case, player j can deviate
from a by selecting an+1

j ∈ Aj to improve her payoff in ΓΨ to Ψ(a−j , a
n+1
j ) = n + 1 > Ψ(a). Hence, a is

definitely not an equilibrium of ΓΨ.
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Proof of assertion 1.4 (c)

Since Γ is a Nash potential game for a continuous potential function, we can take a continuous potential function
Ψ: A → R such that E(ΓΨ) = NE(Γ).
Since Ψ is continuous on the compact profile space A, it follows from the Weierstrass Theorem that Ψ attains
a maximum. Let â ∈ A be a maximiser of Ψ.
Obviously, the maximiser â is an equilibrium of ΓΨ. Therefore, â ∈ E(ΓΨ) = NE(Γ). Thus, â is a Nash
equilibrium of Γ.

1.4.4 Proof of Theorem 1.5

Let Γ = (N,A, π) be a Euclidean normal form game with NE(Γ) 6= ∅. From Theorem 1.2 it then follows
that NE(Γ) ⊂ A is a closed set in the corresponding Euclidean topology.

We define a function Ψ: A → R by

Ψ(a) = − inf
â∈NE(Γ)

‖a− â‖ (1.17)

We now prove the main assertion that Ψ is a continuous potential function such that E(ΓΨ) = NE(Γ) 6= ∅. We
conduct this proof through three lemmas.

Lemma 1.4

♥

The function Ψ: A → R is continuous on A and it can be rewritten as

Ψ(a) = − min
â∈NE(Γ)

‖a− â‖ (1.18)

Proof First we show (1.18). Define for every a ∈ A :

G(a) = inf
a∗∈NE(Γ)

‖a− a∗‖.

First, we remark that for every a ∈ A the value ofG(a) is finite due to NE(Γ) being a closed, non-empty subset
of A.
If a ∈ NE(Γ), it follows that G(a) = 0 = mina∗∈NE(Γ) ‖a− a∗‖.
Next, let a /∈ NE(Γ). Then for every n ∈ N by definition of G(a) there exists some a∗n ∈ NE(Γ) such that

‖a− a∗n‖ 6 G(a) + 1
n .

We show that (a∗n)n∈N is a bounded sequence. Indeed,

‖a∗n‖ 6 ‖a‖+ ‖a∗n − a‖ 6 ‖a‖+G(a) + 1
n

6 ‖a‖+G(a) + 1.

Since A is a closed set in a finite dimensional Euclidean vector space, (a∗n)n∈N has a convergent subsequence.
Assume without loss of generality that a∗n → ã ∈ A. Since (a∗n)n∈N ⊂ NE(Γ) and NE(Γ) is a closed set, it
follows that ã ∈ NE(Γ). Furthermore, ‖a− ã‖ = G(a). But this implies then that the infimum has been attained
in ã, implying that G(a) = mina∗∈NE(Γ) ‖a− a∗‖.
Finally, continuity now easily follows from the property that G is a continuous function as defined. ¶

Lemma 1.5

♥Every â ∈ NE(Γ) is a global maximiser of the function Ψ as defined and, therefore, â ∈ E(ΓΨ).

Proof First, note that if a ∈ NE(Γ), then it follows that Ψ(a) = 0.
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Next, assume that Ψ(a) = 0. Then by Theorem 1.2 it holds that a ∈ NE(Γ) = NE(Γ).
Furthermore, if a /∈ NE(Γ), then obviously minâ∈NE(Γ) ‖a− â‖ > 0. Thus, Ψ(a) < 0.
This implies the assertion that all Nash equilibria of Γ are Ψ-maximisers. ¶

Lemma 1.6

♥Every ã ∈ E(ΓΨ) is a Nash equilibrium of Γ, i.e., ã ∈ NE(Γ).

Proof The previous lemma showed that NE(Γ) ⊂ E(ΓΨ). Hence, we need to show that every a ∈ E(ΓΨ) is a
Nash equilibrium of Γ.
Note that a ∈ E(ΓΨ) if and only if for every i ∈ N : bi ∈ Ai implies thatΨ(a) > Ψ(bi, a−i). This is equivalent
to

min
â∈NE(Γ)

‖a− â‖ 6 min
â∈NE(Γ)

‖(bi, a−i)− â‖.

Let ã ∈ argminâ∈NE(Γ) ‖a− â‖. Then

‖a− ã‖ 6 min
â∈NE(Γ)

‖ (bi, a−i − â‖ 6 ‖ (bi, a−i)− ã‖.

Therefore, ‖a − ã‖2 6 ‖ (bi, a−i) − ã‖2, implying that (ai − ãi)
2 6 (bi − ãi)

2. We conclude therefore that
|ai − ãi| 6 |bi − ãi|. Since, bi ∈ Ai is arbitrary, we conclude that ai = ãi for all i ∈ N . Hence, a = ã.
This shows the assertion. ¶

The three lemmas stated above show that the assertion of Theorem 1.5 holds.
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