
A Generalised 𝜆-Core Concept
for Normal Form Games

Subhadip Chakrabarti
∗

Robert P. Gilles
†

Lina Mallozzi
‡

August 2024

Abstract

We develop a generalisation of the 𝜆-Core solution for non-cooperative games in normal form.

We show that this generalised 𝜆-Core is non-empty for the class of separable games that admit

a socially optimal Nash equilibrium. Examples are provided that indicate that non-emptiness of

the generalised 𝜆-Core cannot be expected for large classes of normal form games.
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1 Introduction: Cores of non-cooperative games

This paper explores Core solutions for normal form non-cooperative games, focusing on the devel-

opment of well-defined characteristic functions derived from coalition payoffs within these games.

These characteristic functions are based on various assumptions regarding the responses of non-

coalition members, resulting in different coalition values. As a result, multiple distinct characteristic

functions can be constructed for the class of normal form games. This multiplicity leads to various

interpretations of what constitutes the Core of a normal form non-cooperative game.

We first explore the different construction methods to build characteristic functions describing

these related cooperative game-theoretic representations of normal form games. Aumann (1959)

seminally proposed the 𝛼- and 𝛽-characteristic functions based on the assumption of min-max

behaviour by players outside a considered coalition. Aumann introduced the 𝛼-characteristic

function for normal form games by positing that each coalition within such games strives to secure

the highest possible payoff, regardless of the strategies adopted by players outside the coalition. This

concept can be likened to a sequential decision-making process: the coalition under consideration
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acts first, selecting a strategy that maximises its own payoff. It then anticipates that non-member

coalitions might subsequently choose strategies that minimise this maximum payoff, leading to a

formulation of the characteristic function in terms of maximin strategies.

A second framework to determine the collective wealth that can be assigned to a coalition in a

normal form game was also considered by Aumann (1959). The 𝛽-characteristic function determines

the highest achievable payoff for a coalition, independent of the strategies adopted by outsiders.

Under a framework of sequential decision-making, it is assumed that non-member coalitions act

initially, selecting strategies that minimise the payoff for the considered coalition. Conversely, the

considered coalition subsequently chooses strategies to maximise its collective payoff. Consequently,

the resulting 𝛽-characteristic function is based on a minimax formulation. Zhao (1999) provided

existence results of 𝛽-Core solutions for oligopolies.

The notion of the 𝛾-characteristic function of a normal form game, developed by Chander and

Tulkens (1997), is a departure from the framework set of the 𝛼- and 𝛽-conceptions, based on the

assumption that non-members of a coalition play individual best replies to the chosen collective

strategy of the coalition and all other non-members. Helm (2001) generalised the non-emptiness

of the 𝛾-Core to a larger class of games with externalities. Lardon (2012, 2020) applied the 𝛾-Core

solution concept to Cournot oligopoly games, while Lardon (2019) investigated the 𝛾-Core for

interval oligopolistic cooperative games, i.e., games where each coalition is assigned an interval of

possible worths. Stamatopoulos (2016) looked at the 𝛾-Core for the particular class of aggregative

games.

The 𝛿-characteristic function of a normal form game, developed by Currarini and Marini (2015)

based on the ideas of Hart and Kurz (1983), is closely related to the 𝛾 formulation. Instead of breaking

up in singleton players, the complement of the coalition under consideration remains in tact and

seeks to optimise its collective payoff. Non-emptiness of the 𝛿-Core was investigated by Reddy and

Zaccour (2016) for the class of games exhibiting multilateral externalities as considered in Chander

and Tulkens (1997).

Currarini and Marini (2003, 2015) also presented a refinement of the 𝛾-formulation introduced as

the 𝜆-characteristic function. In particular, the 𝜆-characteristic function is founded on the idea that

a coalition should have a first mover advantage. Hence, a coalition is assumed to be a Stackelberg

leader in relation to its complement. This implies that the 𝜆-characteristic function is founded on a

subgame perfect reasoning. Currarini and Marini (2003, 2015) consider the 𝜆-characteristic function

only under assumptions that impose that the reaction of the followers exists and is unique.

In this study, we extend the 𝜆-characteristic function to a broader class of games. Specifically,

we eliminate the assumption that the optimal actions of non-coalition members yield a unique

best response. By discarding this uniqueness requirement, we offer a generalisation of the 𝜆-Core,

identifying a class of normal form games that accommodate such generalised 𝜆-Core solutions.

This class encompasses separable games that possess a socially optimal Nash equilibrium. We

demonstrate that, under specific conditions, this equilibrium produces a core allocation for the

generalised 𝜆-characteristic function.

Furthermore, we demonstrate the challenge in generalising the existence theorem to encompass

a wider range of games. We develop some counterexamples illustrating that failure to satisfy certain
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conditions outlined in the existence theorem can lead to empty generalised 𝜆-Cores.

2 Some preliminaries

Consider a given finite set of players 𝑁 = {1, . . . , 𝑛}. Every player 𝑖 ∈ 𝑁 is assigned a strategy set

denoted by 𝐴𝑖 ⊆ R𝑘𝑖
, being a compact subset of some Euclidean space. The payoff function of player

𝑖 ∈ 𝑁 is a continuous map𝑢𝑖 : 𝐴 → R that assigns to every strategy profile 𝑎 ∈ 𝐴 = 𝐴1×𝐴2×· · ·×𝐴𝑛

a payoff 𝑢𝑖 (𝑎). We denote by 𝑢 = (𝑢1, . . . , 𝑢𝑛) : 𝐴 → R𝑛
the tuple of individual payoff functions. The

pair Γ = (𝐴,𝑢) is a normal form game on player set 𝑁 .

We refer to a strategy profile 𝑎 ∈ 𝐴 as a social optimum in the normal form game Γ if

∑
𝑖∈𝑁 𝑢𝑖 (𝑎) ⩾∑

𝑖∈𝑁 𝑢𝑖 (𝑎) for all 𝑎 ∈ 𝐴 (Chinchuluun et al., 2008).

For every player 𝑖 ∈ 𝑁 and strategy profile 𝑎 ∈ 𝐴 we denote by 𝑎−𝑖 ∈ ∏
𝑗≠𝑖 𝐴 𝑗 the strategy

profile except player 𝑖’s given by 𝑎−𝑖 = (𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1, . . . , 𝑎𝑛). A strategy profile 𝑎∗ ∈ 𝐴 is a Nash

equilibrium (Nash, 1950) of the game Γ if for every 𝑖 ∈ 𝑁 : 𝑢𝑖 (𝑎∗) ⩾ 𝑢𝑖 (𝑏𝑖 , 𝑎∗−𝑖) for any 𝑏𝑖 ∈ 𝐴𝑖 .

Best response structures An alternative definition of the Nash equilibrium concept can be given

through the best response structure in a game Γ = (𝐴,𝑢). A best response of player 𝑖 with regard to

𝑎−𝑖 ∈ 𝐴−𝑖 is a strategy 𝑎𝑖 ∈ 𝐴𝑖 such that 𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖) ⩾ 𝑢𝑖 (𝑏𝑖 , 𝑎−𝑖) for all 𝑏𝑖 ∈ 𝐴𝑖 . The resulting best

response correspondence for player 𝑖 is a map 𝐵𝑖 : 𝐴−𝑖 → P(𝐴𝑖) given by

𝐵𝑖 (𝑎−𝑖) = arg max

𝑎𝑖 ∈𝐴𝑖

𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖) (1)

for all 𝑎−𝑖 ∈ 𝐴−𝑖 .1 We refer to 𝐵 =
∏𝑛

𝑖=1
𝐵𝑖 : 𝐴 → 𝐴 as the best response correspondence of Γ.

Nash (1950) showed that a strategy profile 𝑎∗ ∈ 𝐴 is a Nash equilibrium of Γ if and only if 𝑎∗ is a

fixed point of the best response correspondence 𝐵, i.e., 𝑎∗ ∈ 𝐵(𝑎∗).
More generally, for any coalition of players 𝑆 ⊆ 𝑁 we define 𝐴𝑆 =

∏
𝑖∈𝑆 𝐴𝑖 . We can now write

any strategy tuple 𝑎 ∈ 𝐴 as 𝑎 = (𝑎𝑆 , 𝑎𝑁 \𝑆 ) ∈ 𝐴𝑆 × 𝐴𝑁 \𝑆 . Furthermore, we let 𝑎−𝑆 ∈ 𝐴−𝑆 = 𝐴𝑁 \𝑆

denote the collective strategy of the complement of 𝑆 in Γ. A best response of coalition 𝑆 ⊆ 𝑁

with regard to 𝑎−𝑆 ∈ 𝐴−𝑆 is a strategy 𝑎𝑆 ∈ 𝐴𝑆 such that

∑
𝑖∈𝑆 𝑢𝑖 (𝑎𝑆 , 𝑎−𝑆 ) ⩾

∑
𝑖∈𝑆 𝑢𝑖 (𝑏𝑆 , 𝑎−𝑆 ) for all

𝑏𝑆 ∈ 𝐴𝑆 . The resulting best response correspondence for coalition 𝑆 is the map 𝐵𝑆 : 𝐴−𝑆 → P(𝐴𝑆 )
given by

𝐵𝑆 (𝑎−𝑆 ) = arg max

𝑎𝑆 ∈𝐴𝑆

∑︁
𝑖∈𝑆

𝑢𝑖 (𝑎𝑆 , 𝑎−𝑆 ). (2)

Now, a strategy profile 𝑎∗ ∈ 𝐴 is a strong Nash equilibrium (Aumann, 1959) if for all coalitions 𝑆 ⊆ 𝑁

it holds that 𝑎∗
𝑆
∈ 𝐵𝑆 (𝑎∗−𝑆 ).

Characteristic functions Throughout this paper we investigate normal form games from the

perspective of coalitional ability to achieve collective payoffs. For that purpose we introduce

characteristic functions that quantify these coalitional abilities. Formally, a characteristic function on

1
For any set 𝑋 , we denote by P(𝑋 ) = {𝑌 |𝑌 ⊆ 𝑋 } the collection of all subsets of 𝑋 . It is called the power set of 𝑋 .
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player set 𝑁 is a function 𝑣 : 2
𝑁 → R that assigns to every coalition 𝑆 ⊆ 𝑁 a collective payoff 𝑣 (𝑆)

with 𝑣 (∅) = 0.

An allocation for characteristic function 𝑣 is defined as a vector 𝑥 ∈ R𝑁
such that

∑
𝑖∈𝑁 𝑥𝑖 = 𝑣 (𝑁 ).

The halfspace of all allocations for 𝑣 is defined by A(𝑣) ⊂ R𝑁
. For coalition 𝑆 ⊆ 𝑁 and allocation

𝑥 ∈ A(𝑣) we define 𝑥 (𝑆) = ∑
𝑖∈𝑆 𝑥𝑖 . An allocation 𝑥 ∈ A(𝑣) is an imputation for 𝑣 if for all players

𝑖 ∈ 𝑁 : 𝑥𝑖 ⩾ 𝑣 ({𝑖}).
The Core for the characteristic function 𝑣 (Gillies, 1959) is the collection of all allocations that

pay every coalition 𝑆 at least their assigned worth 𝑣 (𝑆), i.e., the Core is defined by

𝐶 (𝑣) = {𝑥 ∈ A(𝑣) | 𝑥 (𝑆) ⩾ 𝑣 (𝑆) for every 𝑆 ⊆ 𝑁 } . (3)

The core of a coalition game assumes the collective payoff of a coalition is fixed and independent

of the specific method used to determine it. It focuses on whether the coalition can distribute this

payoff among its members in a way that prevents any subgroup from being better off by forming a

separate coalition.

In contrast, normal form games explore strategic interactions among coalitions and non-members

to determine collective payoffs, leading to diverse procedural considerations represented by different

characteristic functions. This complexity underscores the variety of core concepts that emerge based

on strategic behaviours within normal form game settings.

We provide an overview of the main characteristic functions for normal form games that were

developed in the literature. In particular, for every coalition 𝑆 ⊂ 𝑁 the following table provides such

a survey:

Solution concept Characteristic function

𝛼-core (Aumann, 1959) 𝑣𝛼 (𝑆) = max

𝑎𝑆 ∈𝐴𝑆

min

𝑏−𝑆 ∈𝐴−𝑆

∑︁
𝑖∈𝑆

𝑢𝑖 (𝑎𝑆 , 𝑏−𝑆 )

𝛽-core (Aumann, 1959) 𝑣𝛽 (𝑆) = min

𝑏−𝑆 ∈𝐴−𝑆
max

𝑎𝑆 ∈𝐴𝑆

∑︁
𝑖∈𝑆

𝑢𝑖 (𝑎𝑆 , 𝑏−𝑆 )

𝛾-core (Chander and Tulkens, 1997) 𝑣𝛾 (𝑆) = ∑
𝑖∈𝑆 𝑢𝑖 (𝑎𝑆 ), 𝑎𝑆 ∈ arg max

𝑎★∈E𝛾 (𝑆 )

∑︁
𝑖∈𝑆

𝑢𝑖 (𝑎★)

𝛿-core (Currarini and Marini, 2015) 𝑣𝛿 (𝑆) = ∑
𝑖∈𝑆 𝑢𝑖 (𝑎𝑆 ), 𝑎𝑆 ∈ arg max

𝑎★∈E𝛿 (𝑆 )

∑︁
𝑖∈𝑆

𝑢𝑖 (𝑎★)

while 𝑣𝛼 (𝑁 ) = 𝑣𝛽 (𝑁 ) = 𝑣𝛾 (𝑁 ) = 𝑣𝛿 (𝑁 ) = max

𝑎∈𝐴

∑︁
𝑖∈𝑁

𝑢𝑖 (𝑎), where

E𝛾 (𝑆) =

𝑎
★ ∈ 𝐴

��������
For all 𝑎𝑆 ∈ 𝐴𝑆 :

∑
𝑖∈𝑆 𝑢𝑖 (𝑎★) ⩾

∑
𝑖∈𝑆 𝑢𝑖 (𝑎𝑆 , 𝑎★−𝑆 ),

and for every 𝑗 ∈ 𝑁 \ 𝑆, 𝑎 𝑗 ∈ 𝐴 𝑗 : 𝑢 𝑗 (𝑎★) ⩾ 𝑢 𝑗 (𝑎 𝑗 , 𝑎★− 𝑗 )
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and

E𝛿 (𝑆) =

𝑎
★ ∈ 𝐴

��������
For all 𝑎𝑆 ∈ 𝐴𝑆 :

∑
𝑖∈𝑆 𝑢𝑖 (𝑎★) ⩾

∑
𝑖∈𝑆 𝑢𝑖 (𝑎𝑆 , 𝑎★−𝑆 ),

and for every 𝑎−𝑆 ∈ 𝐴−𝑆 :

∑
𝑗∈𝑁 \𝑆 𝑢 𝑗 (𝑎★) ⩾

∑
𝑗∈𝑁 \𝑆 𝑢 𝑗 (𝑎★𝑆 , 𝑎−𝑆 )

 .

3 The 𝜆-characteristic function and its generalisation

The term 𝜆-characteristic function was coined by Currarini and Marini (2015)
2

The 𝜆-Core of a

normal form game is founded on a similar principles as the 𝛾-Core, except that the coalition under

consideration is assumed to have a leadership position in the execution of chosen strategies and,

therefore, has a first-mover advantage over the players that are not member of that coalition. In that

respect, it is also natural to refer to the 𝜆-Core as the𝛾-Core with a Stackelberg leader (Stamatopoulos,

2020).

The 𝜆-characteristic function was developed for a specific subclass of normal form games

satisfying the Strong Reduction Property. In these games, it is assumed that the sequential (Stackelberg)

structure is trivial, since decisions by any coalition are assumed to result in a unique optimal and

stable choice for the players outside the coalition. Hence, there exists a unique Nash equilibrium if

the strategy profile for players in any given coalition is fixed. This is a rather strong hypothesis.

We seek to weaken the Strong Reduction Property and to consider situations where there are

possibly multiple Nash equilibria for players outside a given coalition with a fixed strategic profile.

3.1 The Strong Reduction property

Let Γ = (𝐴,𝑢) be some normal form game on player set 𝑁 . Considering any non-empty coalition

∅ ≠ 𝑆 ⊆ 𝑁 , if the coalition commits to the coalitional strategy 𝑎𝑆 ∈ 𝐴𝑆 , then this is equivalent to

coalition 𝑆 leaving the game by implementing the collective strategy 𝑎𝑆 , resulting in a reduced game

based on Γ characterised by (1) the reduced player set 𝑁 \ 𝑆 ; (2) the reduced strategy profile set 𝐴−𝑆 ,

and; (3) the modified payoff structure �̄�𝑆,𝑎𝑆
: 𝐴−𝑆 → R𝑁

defined by �̄�𝑆
𝑗 (𝑏−𝑆 ) = 𝑢 𝑗 (𝑎𝑆 , 𝑏−𝑆 ) for every

player 𝑗 ∈ 𝑁 \ 𝑆 and strategy profile 𝑏−𝑆 ∈ 𝐴−𝑆 .

The set of all Nash equilibria of the reduced game (𝑁 \ 𝑆,𝐴−𝑆 , �̄�𝑆,𝑎𝑆 ) is now denoted by E(𝑁 \
𝑆,𝐴−𝑆 , �̄�𝑆,𝑎𝑆 ) ⊆ 𝐴−𝑆 . Note that this set can be empty. The Strong Reduction property not only

excludes non-emptiness, but also imposes that there exists a unique Nash equilibrium in each of

these subgames.

Definition 3.1 (Strong Reduction Property)
A normal form game Γ = (𝐴,𝑢) has the Strong Reduction Property if for every non-empty coalition

∅ ≠ 𝑆 ⊂ 𝑁 and every coalitional strategy 𝑎𝑆 ∈ 𝐴𝑆 for 𝑆 it holds that E(𝑁 \ 𝑆,𝐴−𝑆 , �̄�𝑆,𝑎𝑆 ) ⊆ 𝐴−𝑆 is a

singleton, i.e., there exists a unique Nash equilibrium in the (𝑆, 𝑎𝑆 )-reduced game.

Next, assume that Γ = (𝐴,𝑢) is a normal form game that has the Strong Reduction Property. For

every non-empty coalition ∅ ≠ 𝑆 ⊆ 𝑁 and coalitional strategy 𝑎𝑆 ∈ 𝐴𝑆 , let E(𝑁 \ 𝑆,𝐴−𝑆 , �̄�𝑆,𝑎𝑆 ) =
2
This conception was seminally introduced by the same authors in Currarini and Marini (2003).
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{
¯𝑏−𝑆 (𝑎𝑆 )

}
. Then the reduced payoff function for coalition 𝑆 is given by �̄� : 𝐴𝑆 → R defined by

�̄� (𝑎𝑆 ) =
∑︁
𝑖∈𝑆

𝑢𝑖
(
𝑎𝑆 , ¯𝑏−𝑆 (𝑎𝑆 )

)
. (4)

The 𝜆-characteristic function for the game Γ is defined by 𝑣𝜆 (∅) = 0, for every non-empty

coalition ∅ ≠ 𝑆 ⊂ 𝑁 by

𝑣𝜆 (𝑆) = max

𝑎𝑆 ∈𝐴𝑆

�̄� (𝑎𝑆 ), (5)

and

𝑣𝜆 (𝑁 ) = max

𝑎∈𝐴

∑︁
𝑖∈𝑁

𝑢𝑖 (𝑎). (6)

The 𝜆-Core of Γ is now given by C𝜆 (Γ) = C(𝑣𝜆).
We conclude the introduction of the notion of the 𝜆-core of a normal form game by stating the

comparative result from Currarini and Marini (2003) and Chander (2010).

Lemma 3.2 Let Γ be a normal form game that satisfies the Strong Reduction Property. Then the

following holds:

∅ ≠ C𝜆 (Γ) ⊆ C𝛾 (Γ) ⊆ C𝛽 (Γ) ⊆ C𝛼 (Γ) . (7)

We emphasise that the Strong Reduction Property is a requirement that imposes severe restrictions

on the class of games for which the 𝜆-Core is properly defined.

3.2 A generalised 𝜆-Core of a normal form game

We aim to extend the definition of the notion of the 𝜆-core beyond the very limited realm of games

that satisfy the Strong Reduction Property. For that purpose we generalise the definition of the

𝜆-characteristic function to arbitrary normal form games.

Let Γ = (𝐴,𝑢) be some normal form game on player set 𝑁 = {1, . . . , 𝑛}. Again, let for some

∅ ≠ 𝑆 ⊂ 𝑁 and strategy 𝑎𝑆 ∈ 𝐴𝑆 , E(𝑁 \ 𝑆,𝐴−𝑆 , �̄�𝑆,𝑎𝑆 ) ⊆ 𝐴−𝑆 denote the set of Nash equilibria in

the reduced game (𝑁 \ 𝑆,𝐴−𝑆 , �̄�𝑆,𝑎𝑆 ) as introduced in the discussion of the 𝜆-characteristic function.

Now, we define the generalised 𝜆-characteristic function as 𝑣𝜆 : 2
𝑁 → R by 𝑣𝜆 (∅) = 0 and for every

∅ ≠ 𝑆 ⊂ 𝑁 :

𝑣𝜆 (𝑆) =


max

𝑎𝑆 ∈𝐴𝑆

max

𝑏−𝑆 ∈E(𝑁 \𝑆,𝐴−𝑆 ,�̄�𝑆,𝑎𝑆 )

∑
𝑖∈𝑆 𝑢𝑖 (𝑎𝑆 , 𝑏−𝑆 ) if E(𝑁 \ 𝑆,𝐴−𝑆 , �̄�𝑆,𝑎𝑆 ) ≠ ∅;

−∞ if E(𝑁 \ 𝑆,𝐴−𝑆 , �̄�𝑆,𝑎𝑆 ) = ∅;

(8)

and, finally,

𝑣𝜆 (𝑁 ) = max

𝑎∈𝐴

∑︁
𝑖∈𝑁

𝑢𝑖 (𝑎), (9)
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We emphasise that, obviously, we no longer impose the Strong Reduction Property. Therefore,

E(𝑁 \ 𝑆,𝐴−𝑆 , �̄�𝑆,𝑎𝑆 ) ⊆ 𝐴−𝑆 can be empty or consist of any number of elements.

The generalised 𝜆-Core of the game Γ is now defined by

Ĉ𝜆 (Γ) = {𝑎 ∈ 𝐴 | 𝑢 (𝑎) ∈ C(𝑣𝜆) } (10)

The generalised 𝜆-Core of separable games The subclass of separable normal form games was

introduced by Balder (1997) and further developed and discussed by Peleg (1998). Subsequently,

Milchtaich (2009) considered separable congestion games with linear variable cost structures. We

formalise the definition of separability as follows.

Definition 3.3 A normal form game Γ = (𝐴,𝑢) on the player set 𝑁 is separable if for all pairs of
players 𝑖, 𝑗 ∈ 𝑁 there exist functions ℎ𝑖𝑗 : 𝐴 𝑗 → R such that for every strategy profile 𝑎 ∈ 𝐴 :

𝑢𝑖 (𝑎) =
∑︁
𝑗∈𝑁

ℎ𝑖𝑗 (𝑎 𝑗 ) (11)

Note that ℎ𝑖𝑖 (𝑎𝑖) is a self-referential payoff in this definition of a separable game. Without proof we

state the following property that follows immediately from the definition of separability.

Lemma 3.4 For any separable game Γ = (𝐴,𝑢) it holds that for every player 𝑖 ∈ 𝑁 and every strategy

profile 𝑎 ∈ 𝐴 :

𝐵𝑖 (𝑎−𝑖) = arg max

𝑏𝑖 ∈𝐴𝑖

𝑢𝑖 (𝑏𝑖 , 𝑎−𝑖) = arg max

𝑏𝑖 ∈𝐴𝑖

[
ℎ𝑖𝑖 (𝑏 𝑗 ) +

∑︁
𝑗≠𝑖

ℎ𝑖𝑗 (𝑎 𝑗 )
]
= arg max

𝑏𝑖 ∈𝐴𝑖

ℎ𝑖𝑖 (𝑏𝑖) .

This implies that 𝐵𝑖 (𝑎−𝑖) = 𝐵𝑖 ⊆ 𝐴𝑖 for any 𝑎−𝑖 ∈ 𝐴−𝑖 .

Our main result shows that for separable games that admit a socially optimal Nash equilibrium,

the generalised 𝜆-Core is non-empty provided certain additional regularity conditions are satisfied.

These regularity conditions require the maximum of additive functions to be the sum of the separate

maxima.
3

Theorem 3.5 Let Γ = (𝐴,𝑢) be a separable normal form game on player set 𝑁 that admits a socially

optimal Nash equilibrium, i.e., there exist a Nash equilibrium 𝑎★ ∈ 𝐴 such that
∑

𝑖∈𝑁 𝑢𝑖 (𝑎★) = 𝑣𝜆 (𝑁 ).
Then if for all coalitions 𝑆 ⊆ 𝑁 and players 𝑗 ∈ 𝑁,

max

𝑎 𝑗 ∈𝐴 𝑗

∑︁
𝑖∈𝑆

ℎ𝑖𝑗 (𝑎 𝑗 ) =
∑︁
𝑖∈𝑆

max

𝑎 𝑗 ∈𝐴 𝑗

ℎ𝑖𝑗 (𝑎 𝑗 ) (12)

and

max

𝑎 𝑗 ∈𝐵 𝑗

∑︁
𝑖∈𝑆

ℎ𝑖𝑗 (𝑎 𝑗 ) =
∑︁
𝑖∈𝑆

max

𝑎 𝑗 ∈𝐵 𝑗

ℎ𝑖𝑗 (𝑎 𝑗 ), (13)

it holds that Ĉ𝜆 (Γ) ≠ ∅.
3
We remind that the sum of the maximums of several functions is at least equal to the maximum of their sum over the

same domain. For further discussion we refer to Chinchuluun et al. (2008).
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For the proof of this theorem we refer to the next subsection. We complete our discussion of

the generalised 𝜆-Core of a separable game through a number of counter examples that show the

emptiness of the generalised 𝜆-Core if the conditions stated in Theorem 3.5 are not satisfied. The

first example considers a non-separable game in which the generalised 𝜆-Core is indeed empty.

Example 3.6 Let 𝑁 = {1, 2} and define the normal form game Γ1 on 𝑁 by 𝐴1 = 𝐴2 = [0, 1] and a

payoff structure with for every 𝑎 = (𝑎1, 𝑎2) ∈ 𝐴1 × 𝐴2 = [0, 1]2
: 𝑢1(𝑎1, 𝑎2) = (1 − 𝑎1 − 2𝑎2)𝑎1 and

𝑢2(𝑎1, 𝑎2) = (1 − 2𝑎1 − 𝑎2)𝑎2.

In this case, we derive that the best response correspondences 𝐵1 and 𝐵2 are actually continuous

functions given by

𝐵1(𝑎2) =


1

2
− 𝑎2 if 0 ⩽ 𝑎2 < 1

2
;

0 if
1

2
⩽ 𝑎2 ⩽ 1;

and 𝐵2(𝑎1) =


1

2
− 𝑎1 if 0 ⩽ 𝑎1 < 1

2
;

0 if
1

2
⩽ 𝑎1 ⩽ 1.

From this we conclude that

𝑣𝜆 ({1}) = max

𝑎1∈𝐴1

max

𝑎2∈𝐵2 (𝑎1 )
𝑢1(𝑎1, 𝑎2) = 1

4

𝑣𝜆 ({2}) = max

𝑎2∈𝐴2

max

𝑎1∈𝐵1 (𝑎2 )
𝑢2(𝑎1, 𝑎2) = 1

4

𝑣𝜆 (𝑁 ) = max

(𝑎1,𝑎2 ) ∈ [0,1]2

(𝑎1 + 𝑎2) − (𝑎2

1
+ 𝑎2

2
) − 4𝑎1𝑎2 =

1

4

It is easy to check that Ĉ𝜆 (Γ1) = ∅. ♦

The next example shows that the condition that the identified Nash equilibrium is also a social

optimum, is critical. Again we use a two-player game to show this.

Example 3.7 Let 𝑁 = {1, 2}. We define the normal form game Γ2 on 𝑁 by 𝐴1 = 𝐴2 = [0, 1] and

a payoff structure with for every 𝑎 = (𝑎1, 𝑎2) ∈ 𝐴1 × 𝐴2 = [0, 1]2
: 𝑢1(𝑎1, 𝑎2) = 𝑎1 and 𝑢2(𝑎1, 𝑎2) =

−𝑎2

1
− 𝑎2.

It is easy to establish that 𝐵1 and 𝐵2 are constant functions with 𝐵1(𝑎2) = 1 and 𝐵2(𝑎1) = 0 for

all (𝑎1, 𝑎2) ∈ [0, 1]2
. The unique Nash equilibrium is, therefore, (1, 0), which is different from the

unique social optimum, determined as

(
1

2
, 0
)
.

Next, it can easily be determined—using the formulations given in Example 3.6—that 𝑣𝜆 ({1}) = 1,

𝑣𝜆 ({2}) = −1, and 𝑣𝜆 ({1, 2}) = max(𝑎1,𝑎2 ) ∈ [0,1]2 𝑎1 − 𝑎2

1
− 𝑎2 = 1

4
. This leads to the conclusion that

Ĉ𝜆 (Γ2) = ∅. ♦

Application: A status game Akerlof (1997) and Le Breton and Weber (2011) considered a status

model where strategic choices of all players represent a one-dimensional interval and an individual

utility depends on a comparison between her own status (the individual’s behaviour) and the status

of all others within the society. We discuss a specification of this status model that admits a unique

generalised 𝜆-Core solution.
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We describe a simple status game Γ3 as follows. Each players 𝑖 ∈ 𝑁 selects a status-inducing

action 𝑎𝑖 ∈ 𝐴𝑖 = [0, 1]. Hence, 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴1 × · · · ×𝐴𝑛 = [0, 1]𝑛 . Each player experiences a

disutility 𝑑 (𝑎𝑖 − 𝑎−𝑖) based on the difference between her choice 𝑎𝑖 and the average of the choices of

everyone else 𝑎−𝑖 =
1

𝑛−1

∑
𝑗≠𝑖 𝑎 𝑗 ∈ [0, 1]—being an expression of the status of the other players in the

society. Here, 𝑑 : [−1, 1] → R is assumed to be some one-dimensional disutility function. If 𝑓𝑖 (𝑎𝑖) is

the intrinsic value of player 𝑖’s action, the net payoffs are now given by 𝑢𝑖 (𝑎) = 𝑓𝑖 (𝑎𝑖) − 𝑑 (𝑎𝑖 − 𝑎−𝑖).
This defines the status game Γ3 = ( [0, 1]𝑛, 𝑢).

Assuming that 𝑑 is the identity function and intrinsic benefits are quadratic, in the sense that

𝑓𝑖 (𝑎𝑖) = 𝑎2

𝑖 for 𝑖 ∈ 𝑁 , we arrive at 𝑢𝑖 (𝑎) = 𝑎2

𝑖 − 𝑎𝑖 + 𝑎−𝑖 . For these specifications, the status game

Γ3 is separable and it is easy to establish that 𝐵𝑖 (𝑎−𝑖) = 𝐵 := {0, 1} for any 𝑎 ∈ 𝐴. There are 2
𝑛

Nash equilibria, corresponding to the vertices of the unit hypercube in R𝑛
. Moreover, the Nash

equilibrium 𝑎★ = (1, . . . , 1) is the unique social optimum in this game.

We conclude therefore that 𝑣𝜆 (𝑆) = |𝑆 | and that, by Theorem 3.5, Ĉ𝜆 (Γ3) = {𝑎★}.

3.3 Proof of Theorem 3.5

Let Γ = (𝐴,𝑢) be, as postulated, a separable normal form game on player set 𝑁 , satisfying (12) and

(13) that admits a socially optimal Nash equilibrium 𝑎★ ∈ 𝐴. Throughout we denote for every 𝑖 ∈ 𝑁

the constant set of best responses by 𝐵𝑖 ⊆ 𝐴𝑖 (Lemma 3.4).

Now, by assumptions (12) and (13),

𝑣𝜆 (𝑁 ) = max

𝑎∈𝐴

∑︁
𝑖∈𝑁

𝑢𝑖 (𝑎) = max

𝑎∈𝐴

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

ℎ𝑖𝑗 (𝑎 𝑗 ) = max

𝑎∈𝐴

𝑛∑︁
𝑗=1

𝑛∑︁
𝑖=1

ℎ𝑖𝑗 (𝑎 𝑗 )

=

𝑛∑︁
𝑗=1

[
max

𝑎 𝑗 ∈𝐴 𝑗

𝑛∑︁
𝑖=1

ℎ𝑖𝑗 (𝑎 𝑗 )
]
=

𝑛∑︁
𝑗=1

𝑛∑︁
𝑖=1

max

𝑎 𝑗 ∈𝐴 𝑗

ℎ𝑖𝑗 (𝑎 𝑗 ) .

Given that 𝑎★ is a social optimum, it follows that

𝑣𝜆 (𝑁 ) =
𝑛∑︁
𝑗=1

𝑛∑︁
𝑖=1

ℎ𝑖𝑗 (𝑎★𝑗 ).

Furthermore, by 𝑎★ being a Nash equilibrium of Γ, it follows that 𝑎★𝑗 ∈ 𝐵 𝑗 for all 𝑗 ∈ 𝑁 .

Next, take an arbitrary coalition ∅ ≠ 𝑆 ⊂ 𝑁 and let 𝑎𝑆 ∈ 𝐴𝑆 . We investigate the maximisation of

the collective payoff of 𝑆 over E(𝑁 \ 𝑆,𝐴−𝑆 , �̄�𝑆,𝑎𝑆 ). Now for any 𝑏−𝑆 ∈ 𝐴−𝑆 , player 𝑖 ∈ 𝑁 \ 𝑆 is

maximising 𝑢𝑖 (𝑎𝑆 , 𝑏−𝑆 ) =
∑

𝑗∈𝑁 ℎ𝑖𝑗 (𝑎𝑆 , 𝑏−𝑆 ) with respect to 𝑏𝑖 ∈ 𝐴𝑖 and therefore will choose 𝑏𝑖 ∈ 𝐵𝑖 .

9



Therefore, using the auxiliary notation 𝐵(−𝑆) = ∏
𝑗∈𝑁 \𝑆 𝐵 𝑗 ,

max

𝑏−𝑆 ∈E(𝑁 \𝑆,𝐴−𝑆 ,�̄�𝑆,�̄�𝑆 )

∑︁
𝑖∈𝑆

𝑢𝑖 (𝑎𝑆 , 𝑏−𝑆 ) = max

𝑏−𝑆 ∈E(𝑁 \𝑆,𝐴−𝑆 ,�̄�𝑆,�̄�𝑆 )

∑︁
𝑖∈𝑆


∑︁
𝑗∈𝑆

ℎ𝑖𝑗 (𝑎 𝑗 ) +
∑︁

ℎ∈𝑁 \𝑆
ℎ𝑖
ℎ
(𝑏ℎ)


= max

𝑏 𝑗 ∈𝐵 𝑗 : 𝑗∈𝑁 \𝑆

∑︁
𝑖∈𝑆


∑︁
𝑗∈𝑆

ℎ𝑖𝑗 (𝑎 𝑗 ) +
∑︁

ℎ∈𝑁 \𝑆
ℎ𝑖
ℎ
(𝑏ℎ)


= max

𝑏−𝑆 ∈𝐵 (−𝑆 )

∑︁
𝑖∈𝑆


∑︁
𝑗∈𝑆

ℎ𝑖𝑗 (𝑎 𝑗 ) +
∑︁

ℎ∈𝑁 \𝑆
ℎ𝑖
ℎ
(𝑏ℎ)


Using the above, we first show that 𝑣𝜆 is partitionally superadditive. First, from our assumptions

(12) and (13) it follows that

𝑣𝜆 (𝑆) = max

𝑎𝑆 ∈𝐴𝑆

max

𝑏−𝑆 ∈E(𝑁 \𝑆,𝐴−𝑆 ,�̄�𝑆,𝑎𝑆 )

∑︁
𝑖∈𝑆

𝑢𝑖 (𝑎𝑆 , 𝑏−𝑆 )

= max

𝑎𝑆 ∈𝐴𝑆

max

𝑏−𝑆 ∈𝐵 (−𝑆 )

∑︁
𝑖∈𝑆


∑︁
𝑗∈𝑆

ℎ𝑖𝑗 (𝑎 𝑗 ) +
∑︁

ℎ∈𝑁 \𝑆
ℎ𝑖
ℎ
(𝑏ℎ)


= max

𝑎𝑆 ∈𝐴𝑆

∑︁
𝑗∈𝑆

∑︁
𝑖∈𝑆

ℎ𝑖𝑗 (𝑎 𝑗 ) + max

𝑏−𝑆 ∈𝐵 (−𝑆 )

∑︁
𝑗∈𝑁 \𝑆

∑︁
𝑖∈𝑆

ℎ𝑖𝑗 (𝑏 𝑗 )

=
∑︁
𝑗∈𝑆

max

𝑎 𝑗 ∈𝐴 𝑗

∑︁
𝑖∈𝑆

ℎ𝑖𝑗 (𝑎 𝑗 ) +
∑︁

𝑗∈𝑁 \𝑆
max

𝑏 𝑗 ∈𝐵 𝑗

∑︁
𝑖∈𝑆

ℎ𝑖𝑗 (𝑏 𝑗 )

=
∑︁
𝑗∈𝑆

∑︁
𝑖∈𝑆

max

𝑎 𝑗 ∈𝐴 𝑗

ℎ𝑖𝑗 (𝑎 𝑗 ) +
∑︁

𝑗∈𝑁 \𝑆

∑︁
𝑖∈𝑆

max

𝑏 𝑗 ∈𝐵 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )

Likewise, we derive that

𝑣𝜆 (𝑁 \ 𝑆) =
∑︁

𝑗∈𝑁 \𝑆

∑︁
𝑖∈𝑁 \𝑆

[
max

𝑎 𝑗 ∈𝐴 𝑗

ℎ𝑖𝑗 (𝑎 𝑗 )
]
+
∑︁
𝑗∈𝑆

∑︁
𝑖∈𝑁 \𝑆

[
max

𝑏 𝑗 ∈𝐵 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]
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Therefore,

𝑣𝜆 (𝑆) + 𝑣𝜆 (𝑁 \ 𝑆) =
∑︁
𝑗∈𝑆

∑︁
𝑖∈𝑆

[
max

𝑎 𝑗 ∈𝐴𝑗

ℎ𝑖𝑗 (𝑎 𝑗 )
]
+

∑︁
𝑗∈𝑁 \𝑆

∑︁
𝑖∈𝑁 \𝑆

[
max

𝑎 𝑗 ∈𝐴 𝑗

ℎ𝑖𝑗 (𝑎 𝑗 )
]
+

+
∑︁

𝑗∈𝑁 \𝑆

∑︁
𝑖∈𝑆

[
max

𝑏 𝑗 ∈𝐵 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]
+
∑︁
𝑗∈𝑆

∑︁
𝑖∈𝑁 \𝑆

[
max

𝑏 𝑗 ∈𝐵 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]

⩽
∑︁
𝑗∈𝑆

∑︁
𝑖∈𝑆

[
max

𝑎 𝑗 ∈𝐴 𝑗

ℎ𝑖𝑗 (𝑎 𝑗 )
]
+

∑︁
𝑗∈𝑁 \𝑆

∑︁
𝑖∈𝑁 \𝑆

[
max

𝑎 𝑗 ∈𝐴 𝑗

ℎ𝑖𝑗 (𝑎 𝑗 )
]
+

+
∑︁

𝑗∈𝑁 \𝑆

∑︁
𝑖∈𝑆

[
max

𝑏 𝑗 ∈𝐴𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]
+
∑︁
𝑗∈𝑆

∑︁
𝑖∈𝑁 \𝑆

[
max

𝑏 𝑗 ∈𝐴 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]

=
∑︁
𝑗∈𝑆

∑︁
𝑖∈𝑁

[
max

𝑎 𝑗 ∈𝐴 𝑗

ℎ𝑖𝑗 (𝑎 𝑗 )
]
+

∑︁
𝑗∈𝑁 \𝑆

∑︁
𝑖∈𝑁

[
max

𝑎 𝑗 ∈𝐴 𝑗

ℎ𝑖𝑗 (𝑎 𝑗 )
]

=
∑︁
𝑗∈𝑁

∑︁
𝑖∈𝑁

[
max

𝑎 𝑗 ∈𝐴𝑗

ℎ𝑖𝑗 (𝑎 𝑗 )
]
= 𝑣𝜆 (𝑁 ).

From the above, we conclude that 𝑣𝜆 is indeed partitionally superadditive.

Next, we show that 𝑣𝜆 is also partitionally subadditive. From 𝑎★ ∈ 𝐴 being a Nash equilibrium,

𝑎★𝑖 ∈ 𝐵𝑖 for all players 𝑖 ∈ 𝑁 . This implies further that for every 𝑖 ∈ 𝑁 :

𝑢𝑖 (𝑎★) =
∑︁
𝑗∈𝑁

ℎ𝑖𝑗 (𝑎★𝑗 ) ⩽
∑︁
𝑗∈𝑁

[
max

𝑏 𝑗 ∈𝐵 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]
.

This leads to the conclusion that

𝑣𝜆 (𝑁 ) =
∑︁
𝑖∈𝑁

𝑢𝑖 (𝑎★) ⩽
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁

[
max

𝑏 𝑗 ∈𝐵 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]

=
∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑆

[
max

𝑏 𝑗 ∈𝐵 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]
+
∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑁 \𝑆

[
max

𝑏 𝑗 ∈𝐵 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]
+

+
∑︁

𝑖∈𝑁 \𝑆

∑︁
𝑗∈𝑆

[
max

𝑏 𝑗 ∈𝐵 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]
+

∑︁
𝑖∈𝑁 \𝑆

∑︁
𝑗∈𝑁 \𝑆

[
max

𝑏 𝑗 ∈𝐵 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]

⩽
∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑆

[
max

𝑏 𝑗 ∈𝐴 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]
+
∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑁 \𝑆

[
max

𝑏 𝑗 ∈𝐵 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]
+

+
∑︁

𝑖∈𝑁 \𝑆

∑︁
𝑗∈𝑆

[
max

𝑏 𝑗 ∈𝐵 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]
+

∑︁
𝑖∈𝑁 \𝑆

∑︁
𝑗∈𝑁 \𝑆

[
max

𝑏 𝑗 ∈𝐴 𝑗

ℎ𝑖𝑗 (𝑏 𝑗 )
]

=𝑣𝜆 (𝑆) + 𝑣𝜆 (𝑁 \ 𝑆).

Hence, we conclude that 𝑣𝜆 is partitionally additive or constant sum: For every 𝑆 ∈ 2
𝑁

it holds that

𝑣𝜆 (𝑁 ) = 𝑣𝜆 (𝑆) + 𝑣𝜆 (𝑁 \ 𝑆).

We conclude the proof by showing that, since 𝑣𝜆 is constant-sum, Ĉ(Γ) = {𝑎 ∈ 𝐴 | 𝑢 (𝑎) ∈ C(𝑣𝜆) } ≠
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∅. Indeed,

𝑣𝜆 (𝑆) = max

𝑎𝑆 ∈𝐴𝑆

max

𝑏−𝑆 ∈E(𝑁 \𝑆,𝐴−𝑆 ,�̄�𝑆,𝑎𝑆 )

∑︁
𝑖∈𝑆

𝑢𝑖 (𝑎𝑆 , 𝑏−𝑆 ) ⩾ max

𝑏−𝑆 ∈E(𝑁 \𝑆,𝐴−𝑆 ,�̄�
𝑆,𝑎★

𝑆 )

∑︁
𝑖∈𝑆

𝑢𝑖 (𝑎★𝑆 , 𝑏−𝑆 ) .

Since 𝑎★−𝑆 ∈ E(𝑁 \ 𝑆,𝐴−𝑆 , �̄�
𝑆,𝑎★

𝑆 ) : 𝑣𝜆 (𝑆) ⩾ ∑
𝑖∈𝑆 𝑢𝑖 (𝑎★𝑆 , 𝑎

★
−𝑆 ) =

∑
𝑖∈𝑆 𝑢𝑖 (𝑎★). Using the fact that 𝑣𝜆 is

constant-sum, i.e., 𝑣𝜆 (𝑁 ) = 𝑣𝜆 (𝑆) + 𝑣𝜆 (𝑁 \ 𝑆), we conclude that

𝑣𝜆 (𝑁 ) =
∑︁
𝑖∈𝑁

𝑢𝑖 (𝑎★) = 𝑣𝜆 (𝑆) + 𝑣𝜆 (𝑁 \ 𝑆) ⩾
∑︁
𝑖∈𝑆

𝑢𝑖 (𝑎★) + 𝑣𝜆 (𝑁 \ 𝑆)

This simplifies to

∑
𝑖∈𝑁 \𝑆 𝑢𝑖 (𝑎★) ⩾ 𝑣𝜆 (𝑁 \ 𝑆). Next, by exchanging the role of 𝑆 and 𝑁 \ 𝑆 , we also

arrive at

∑
𝑖∈𝑆 𝑢𝑖 (𝑎★) ⩾ 𝑣𝜆 (𝑆).

Therefore,

∑
𝑖∈𝑆 𝑢𝑖 (𝑎★) = 𝑣𝜆 (𝑆), and in particular 𝑢𝑖 (𝑎★) = 𝑣𝜆 (𝑖) for any 𝑖 ∈ 𝑁 . Hence, 𝑣𝜆 (𝑁 ) =∑

𝑖∈𝑁 𝑣𝜆 (𝑖), implying that (𝑣𝜆 (1), . . . , 𝑣𝜆 (𝑛) ) = (𝑢1(𝑎★), ...., 𝑢𝑛 (𝑎★)) ∈ C(𝑣𝜆), leading to the desired

conclusion that 𝑎★ ∈ Ĉ𝜆 (Γ) ≠ ∅.

4 Some concluding remarks

The question whether the generalised 𝜆-Core of a normal form game is non-empty has been affirma-

tively answered for separable games that admit socially optimal Nash equilibria provided conditions

(12) and (13) are satisfied. This is a rather restrictive class of games. This research can possibly be

extended to more broad classes of games, but general existence theorems are hard to establish.

Here, we explore insights for the more broad class of additively separable games introduced by

Mishra et al. (2018).

Definition 4.1 A normal form game Γ = (𝐴,𝑢) on the player set 𝑁 is additively separable if for
every player 𝑖 ∈ 𝑁 there exists a function 𝑠𝑖 : 𝐴𝑖 → R such that

∑
𝑖∈𝑁 𝑢𝑖 (𝑎) =

∑
𝑖∈𝑁 𝑠𝑖 (𝑎𝑖) for every

strategy profile 𝑎 ∈ 𝐴.

We conjecture that for the class of additively separable games the resulting generalised 𝜆-Core is

non-empty subject to certain regularity conditions. In particular, we expect that the generalised

𝜆-Core is non-empty if the conditions of Theorem 3.5 for this larger class of additively separable

games hold. The next example shows this for a two-player game.

Example 4.2 Let 𝑁 = {1, 2}. We define the normal form game Γ on 𝑁 by 𝐴1 = 𝐴2 = [0, 1] and a

payoff structure such that for every 𝑎 = (𝑎1, 𝑎2) ∈ 𝐴1 × 𝐴2 = [0, 1]2
: 𝑢1(𝑎1, 𝑎2) =

(
1

2
− 𝑎2

)
𝑎1 and

𝑢2(𝑎1, 𝑎2) = 𝑎1𝑎2.

In this case we derive that for every (𝑎1, 𝑎2) ∈ [0, 1]2
:

𝐵1(𝑎2) =



{1} if 0 ⩽ 𝑎2 < 1

2

[0, 1] if 𝑎2 =
1

2

{0} if
1

2
< 𝑎2 ⩽ 1

and 𝐵2(𝑎1) =


[0, 1] if 𝑎1 = 0

{1} if 𝑎1 > 0

12



Hence, the set of Nash equilibria of this game Γ is given by

{
(0, 𝑎2) | 1

2
⩽ 𝑎2 ⩽ 1

}
and the set of

social optima is determined as {(1, 𝑎2) | 0 ⩽ 𝑎2 ⩽ 1 }.
Finally, using the formulations given in Example 3.6, 𝑣𝜆 ({1}) = 0, 𝑣𝜆 ({2}) = 1

2
, and 𝑣𝜆 ({1, 2}) =

max(𝑎1,𝑎2 ) ∈ [0,1]2

𝑎1

2
= 1

2
. Therefore, C(𝑣𝜆) =

{ (
0, 1

2

) }
≠ ∅, which selects from the set of Nash

equilibria, but not from the set of social optima in this game. ♦
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